MLS Research

Pollution / Cloud Interactions

Contact Jonathan Jiang

Aerosols (small particles of dust or soot, or small droplets of sulphate solution or organic liquids) can affect the Earth's radiation budget and climate in two important ways: directly and indirectly.

Aerosols can absorb incoming sunlight and also reflect it back to space. This is called the aerosol 'direct' effect.

Aerosols also indirectly affect climate by modifying clouds and precipitation when they act as cloud condensation nuclei (i.e., particles provide surfaces on which cloud droplets can form). This is called the aerosol indirect effect.

Measuring aerosol indirect effect is challenging, because aerosols cannot be easily detected by satellite sensors when they are inside clouds. One way to solve this problem is to use carbon monoxide (CO) to infer the presence of aerosols since they both are produced by incomplete combustion that occurs, for example, in fires.

CO can be measured by MLS inside high clouds, because the microwave wavelengths observed by MLS are larger than the typical cloud particle size. Once MLS measurements identified whether the clouds are clean or dirty by the amount of CO concentration they have, other data from the 'A-train' satellite instruments, such as cloud particle size from Aqua MODIS and precipitation from TRMM, can be used to examine the aerosol indirect effect.

Changes of cloud particle size and precipitation due to aerosols are important information for climate studies, and for understanding the response of the climate system to changes in air pollution.

MLS-related publications concerning pollution / cloud interactions

  1. Solomon, S., K. Stone, P. Yu, D.M. Murphy, D. Kinnison, A.R. Ravishankara and P. Wang
    Chlorine activation and enhanced ozone depletion induced by wildfire aerosol
  2. Wang, P., S. Solomon and K. Stone
    Stratospheric chlorine processing after the 2020 Australian wildfires derived from satellite data
    Proc. Nat. Acad. Sci. doi:10.1073/pnas.2213910120, 2023
  3. Fujiwara, M., G.L. Manney, L.J. Gray and J.S. Wright
    SPARC Reanalysis Intercomparison Project S-RIP Final Report
    n/a 2022
  4. Martinsson, B., J. Friberg, O. Sandvik and M. Sporre
    Five-satellite-sensor study of the rapid decline of wildfire smoke in the stratosphere
    Atmos. Chem. Phys. 10.5194/acp-22-3967-2022, 2022
  5. Peng, K., J. Luo, J. Mu, X. Cao, H. Tian, L. Shang and Y. Guo
    Impact of intensity variability of the Asian summer monsoon anticyclone on the chemical distribution in the upper troposphere and lower stratosphere
    Atmospheric and Oceanic Science Letters 10.1016/j.aosl.2021.100144, 2022
  6. Qie, K., W. Wang, W. Tian, R. Huang, M. Xu, T. Wang and Y. Peng
    Enhanced upward motion through the troposphere over the tropical western Pacific and its implications for the transport of trace gases from the troposphere to the stratosphere
    Atmos. Chem. Phys. doi:10.5194/acp-22-4393-2022, 2022
  7. Salawitch, R. and L. McBride
    Australian wildfires depleted the ozone layer
  8. Santee, M.L., A. Lambert, G.L. Manney, N.J. Livesey, L. Froidevaux, J.L. Neu, M.J. Schwartz, L.F. Millán, F. Werner, W.G. Read, M. Park, R.A. Fuller and B.M. Ward
    Prolonged and Pervasive Perturbations in the Composition of the Southern Hemisphere Midlatitude Lower Stratosphere From the Australian New Year's Fires
    Geophys. Res. Lett. doi:10.1029/2021gl096270, 2022
  9. Xiong, X., X. Liu, W. Wu, K.E. Knowland, Q. Yang, J. Welsh and D. Zhou
    Satellite observation of stratospheric intrusions and ozone transport using CrIS on SNPP
    Atmospheric Environment doi:10.1016/j.atmosenv.2022.118956, 2022
  10. Babu, S.R., M.V. Ratnam, G. Basha, S. Pani and N. Lin
    Structure, dynamics, and trace gas variability within the Asian summer monsoon anticyclone in the extreme El Niño of 2015–2016
    Atmos. Chem. Phys. doi:10.5194/acp-21-5533-2021, 2021
  11. Bossolasco, A., F. Jegou, P. Sellitto, G. Berthet, C. Kloss and B. Legras
    Global modeling studies of composition and decadal trends of the Asian Tropopause Aerosol Layer
    Atmos. Chem. Phys. doi:10.5194/acp-21-2745-2021, 2021
  12. Gharibzadeh, M., A. Bidokhti and K. Alam
    The interaction of ozone and aerosol in a semi-arid region in the Middle East: Ozone formation and radiative forcing implications
    Atmospheric Environment doi:10.1016/j.atmosenv.2020.118015, 2021
  13. He, X., J. Luo, X. Xu, L. Ren, H. Tian, L. Shang and P. Xu
    The QBO Modulation on CO Distribution in the UTLS Over the Asian Monsoon Region During Boreal Summer
    Front. Earth Sci. doi:10.3389/feart.2021.625990, 2021
  14. Jenkins, G., V.D. Castro, B. Cunha, I. Fontanez and R. Holzworth
    The Evolution of the Wave‐One Ozone Maximum During the 2017 LASIC Field Campaign at Ascension Island
    Journal of Geophysical Research: Atmospheres doi:10.1029/2020jd033972, 2021
  15. Park, M., H. Worden, D. Kinnison, B. Gaubert, S. Tilmes, L. Emmons, M. Santee, L. Froidevaux and C. Boone
    Fate of pollution emitted during the 2015 Indonesian Fire Season
    Journal of Geophysical Research: Atmospheres doi:10.1029/2020jd033474, 2021
  16. Pumphrey, H., M. Schwartz, M. Santee, G. Kablick III, M. Fromm and N. Livesey
    Microwave Limb Sounder MLS observations of biomass burning products in the stratosphere from Canadian forest fires in August 2017
    Atmos. Chem. Phys. doi:10.5194/acp-21-16645-2021, 2021
  17. Rieger, L.A., W.J. Randel, A.E. Bourassa and S. Solomon
    Stratospheric Temperature and Ozone Anomalies Associated With the 2020 Australian New Year Fires
    Geophys. Res. Lett. doi:10.1029/2021gl095898, 2021
  18. Girach, I., P. Nair, N. Ojha and L. Sahu
    Tropospheric carbon monoxide over the northern Indian Ocean during winter: influence of inter-continental transport
    Climate Dynamics doi:10.1007/s00382-020-05269-4, 2020
  19. Inness, A., M. Ades, A. Agustí-Panareda, J. Barré, A. Benedictow, A. Blechschmidt, J. Dominguez, R. Engelen, H. Eskes, J. Flemming, V. Huijnen, L. Jones, Z. Kipling, S. Massart, M. Parrington, V. Peuch, M. Razinger, S. Remy, M. Schulz and M. Suttie
    The CAMS reanalysis of atmospheric composition
    Atmos. Chem. Phys. doi:10.5194/acp-19-3515-2019, 2019
  20. RavindraBabu, S., M. Ratnam, G. Basha, Y. Liou and N. Reddy
    Large Anomalies in the Tropical Upper Troposphere Lower Stratosphere UTLS Trace Gases Observed during the Extreme 2015–16 El Niño Event by Using Satellite Measurements
    Remote Sens. doi:10.3390/rs11060687, 2019
  21. Zeb, N., M. Khokhar, A. Pozzer and S. Khan
    Exploring the temporal trends and seasonal behaviour of tropospheric trace gases over Pakistan by exploiting satellite observations
    Atmospheric Environment doi:10.1016/j.atmosenv.2018.10.053, 2019
  22. Zhou, L., J. Zhang, X. Zheng, W. Xue and S. Zhu
    Impacts of Chemical and Synoptic Processes on Summer Tropospheric Ozone Trend in North China
    Advances in Meteorology doi:10.1155/2019/3148432, 2019
  23. Kablick, G., M. Fromm, S. Miller, P. Partain, D. Peterson, S. Lee, Y. Zhang, A. Lambert and Z. Li
    The Great Slave Lake PyroCb of 5 August 2014: Observations, Simulations, Comparisons With Regular Convection, and Impact on UTLS Water Vapor
    Journal of Geophysical Research: Atmospheres doi:10.1029/2018jd028965, 2018
  24. Luo, J., L. Pan, S. Honomichl, J. Bergman, W. Randel, G. Francis, C. Clerbaux, M. George, X. Liu and W. Tian
    Space–time variability in UTLS chemical distribution in the Asian summer monsoon viewed by limb and nadir satellite sensors
    Atmos. Chem. Phys. doi:10.5194/acp-18-12511-2018, 2018
  25. Ma, M., K. Bai, F. Qiao, R. Shi and W. Gao
    Quantifying impacts of crop residue burning in the North China Plain on summertime tropospheric ozone over East Asia
    Atmospheric Environment doi:10.1016/j.atmosenv.2018.09.018, 2018
  26. Pumphrey, H., N. Glatthor, P. Bernath, C. Boone, J. Hannigan, I. Ortega, N. Livesey and W. Read
    MLS measurements of stratospheric hydrogen cyanide during the 2015–2016 El Niño event
    Atmos. Chem. Phys. doi:10.5194/acp-18-691-2018, 2018
  27. Wang, Y., C. Yu, J. Tao, Z. Wang, Y. Si, L. Cheng, H. Wang, S. Zhu and L. Chen
    Spatio-Temporal Characteristics of Tropospheric Ozone and Its Precursors in Guangxi, South China
    Atmosphere doi:10.3390/atmos9090355, 2018
  28. Jaeglé, L., R. Wood and K. Wargan
    Multiyear Composite View of Ozone Enhancements and Stratosphere-to-Troposphere Transport in Dry Intrusions of Northern Hemisphere Extratropical Cyclones
    Journal of Geophysical Research: Atmospheres doi:10.1002/2017jd027656, 2017
  29. Luo, J., J. Song, H. Tian, L. Liu and X. Liang
    A Case Study of Mass Transport during the East-West Oscillation of the Asian Summer Monsoon Anticyclone
    Advances in Meteorology doi:10.1155/2017/5174025, 2017
  30. Miyazaki, K., H. Eskes, K. Sudo, K.F. Boersma, K. Bowman and Y. Kanaya
    Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation
    Atmos. Chem. Phys. doi:10.5194/acp-17-807-2017, 2017
  31. Ploeger, F., P. Konopka, K. Walker and M. Riese
    Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere
    Atmos. Chem. Phys. doi:10.5194/acp-17-7055-2017, 2017
  32. Roy, C., S. Fadnavis, R. Müller, D.C. Ayantika, F. Ploeger and A. Rap
    Influence of enhanced Asian NOx emissions on ozone in the upper troposphere and lower stratosphere in chemistry-climate model simulations
    Atmos. Chem. Phys. doi:10.5194/acp-17-1297-2017, 2017
  33. Santee, M.L., G.L. Manney, N.J. Livesey, M.J. Schwartz, J.L. Neu and W.G. Read
    A comprehensive overview of the climatological composition of the Asian summer monsoon anticyclone based on 10 years of Aura Microwave Limb Sounder measurements
    Journal of Geophysical Research: Atmospheres doi:10.1002/2016jd026408, 2017
  34. Stone, K., S. Solomon, D. Kinnison, M. Pitts, L. Poole, M. Mills, A. Schmidt, R. Neely, D. Ivy, M. Schwartz, J. Vernier, B. Johnson, M. Tully, A. Klekociuk, G. König-Langlo and S. Hagiya
    Observing the impact of Calbuco volcanic aerosols on South Polar ozone depletion in 2015
    Journal of Geophysical Research: Atmospheres doi:10.1002/2017jd026987, 2017
  35. Wu, L., H. Su, O.V. Kalashnikova, J.H. Jiang, C. Zhao, M.J. Garay, J.R. Campbell and N. Yu
    [PDF] from atmos-chem-phys-discuss.net Full View WRF-Chem simulation of aerosol seasonal variability in the San Joaquin Valley
  36. Ziemke, J., S. Strode, A. Douglass, J. Joiner, A. Vasilkov, L. Oman, J. Liu, S. Strahan, P. Bhartia and D. Haffner
    A cloud-ozone data product from Aura OMI and MLS satellite measurements
    Atmospheric Measurement Techniques doi:10.5194/amt-10-4067-2017, 2017
  37. Elsaesser, G.S., A.D. Genio, J.H. Jiang and M. van Lier-Walqui
    An Improved Convective Ice Parameterization for the NASA GISS Global Climate Model and Impacts on Cloud Ice Simulation
    J. Climate doi:10.1175/JCLI-D, 2016
  38. Garny, H. and W. Randel
    Transport pathways from the Asian monsoon anticyclone to the stratosphere
    Atmos. Chem. Phys. doi:10.5194/acp-16-2703-2016, 2016
  39. Gu, Y., K.N. Liou, J.H. Jiang, R. Fu, S. Lu and Y. Xue
    A GCM Investigation of Impact of Aerosols on the Precipitation in Amazon during the Dry to Wet Transition
    Climate Dynamics doi:10.1007/s00382-016-3211-7, 2016
  40. Gu, Y., H. Liao and J. Bian
    Summertime nitrate aerosol in the upper troposphere and lower stratosphere over the Tibetan Plateau and the South Asian summer monsoon region
    Atmos. Chem. Phys. doi:10.5194/acp-16-6641-2016, 2016
  41. Huang, L., J.H. Jiang, L. Murry, M. Damon, H. Su and N. Livesey
    Evaluation of UTLS carbon monoxide simulations in GMI and GEOS-Chem chemical transport models using Aura MLS observations
    Atmos. Chem. Phys. doi:10.5194/acp-16-5641-2016, 2016
  42. Huntrieser, H., M. Lichtenstern, M. Scheibe, H. Aufmhoff, H. Schlager, T. Pucik, A. Minikin, B. Weinzierl, K. Heimerl, I.B. Pollack, J. Peischl, T.B. Ryerson, A.J. Weinheimer, S. Honomichl, B.A. Ridley, M.I. Biggerstaff, D.P. Betten, J.W. Hair, C.F. Butler, M.J. Schwartz and M.C. Barth
    Injection of lightning-produced NOx, water vapor, wildfire emissions, and stratospheric air to the UT/LS as observed from DC3 measurements
    Journal of Geophysical Research: Atmospheres doi:10.1002/2015jd024273, 2016
  43. Minschwaner, K., H. Su and J.H. Jiang
    The upward branch of the Brewer-Dobson circulation quantified by tropical stratospheric water vapor and carbon monoxide measurements from the Aura Microwave Limb Sounder
    Journal of Geophysical Research: Atmospheres doi:10.1002/2015JD023961, 2016
  44. Pathakoti, M., P. Sujatha, R.K. Sinivasa, S.V.S.S. Krishn, P.V.N. Rao, C.B.S. Dutt and K.V. Dadhwal
    Evidence of stratosphere–troposphere exchange during severe cyclones: a case study over Bay of Bengal, India
    Geomatics, Natural Hazards and Risk doi:10.1080/19475705.2016.1155502, 2016
  45. Ratnam, M.V., S.R. Babu, S.S. Das, G. Basha, B.V. Krishnamurthy and B. Venkateswararao
    Effect of tropical cyclones on the stratosphere–troposphere exchange observed using satellite observations over the north Indian Ocean
    Atmos. Chem. Phys. doi:10.5194/acp-16-8581-2016, 2016
  46. Takahashi, H., H. Su and J.H. Jiang
    Error analysis of upper tropospheric water vapor in CMIP5 models using “A-Train” satellite observations and reanalysis data
    Climate Dynamics doi:10.1007/s00382-015-2732-9, 2016
  47. Vogel, B., G. Günther, R. Müller, J. Grooß, A. Afchine, H. Bozem, P. Hoor, M. Krämer, S. Müller, M. Riese, C. Rolf, N. Spelten, G. Stiller, J. Ungermann and A. Zahn
    Long-range transport pathways of tropospheric source gases originating in Asia into the northern lower stratosphere during the Asian monsoon season 2012
    Atmos. Chem. Phys. doi:10.5194/acp-16-15301-2016, 2016
  48. Wang, Y., H. Su, J.H. Jiang, N.J. Livesey, M.L. Santee, P.C. Stek, L. Froidevaux, W.G. Read and J. Anderson
    The linkage between stratospheric water vapor and surface temperature in an observation-constrained coupled general circulation model
    Climate Dynamics doi:10.1007/s00382-016-3231-3, 2016
  49. Xie, F., J. Li, W. Tian, D. Hu, J. Zhang, J. Shu and C. Wang
    A Quantitative Estimation of the Transport of Surface Emissions from Different Regions into the Stratosphere
  50. Yan, X., J.S. Wright, X. Zheng, N.J. Livesey, H. Vömel and X. Zhou
    Validation of Aura MLS retrievals of temperature, water vapour and ozone in the upper troposphere and lower–middle stratosphere over the Tibetan Plateau during boreal summer
    Atmospheric Measurement Techniques doi:10.5194/amt-9-3547-2016, 2016