MLS Research
Stratospheric Polar Processes and Ozone
Contact Michelle Santee
One of the overarching goals of the Aura mission is to track the stability of the stratospheric ozone layer. At issue is whether global stratospheric ozone will recover as anticipated as the abundances of ozone-depleting substances decline in response to international regulations.
The primary agent responsible for the formation of the ozone hole that forms over Antarctica every austral spring is anthropogenic chlorine. Stratospheric chlorine loading is presently near its peak but waning; assuming compliance with existing protocols, it should return to pre-1980 levels by about 2050.
Although detection and attribution of small changes in chlorine-catalyzed ozone loss are challenging problems, some abatement of lower stratospheric polar ozone depletion may become apparent during the Aura timeframe. There are, however, important linkages between climate change and ozone depletion that could delay recovery of the ozone layer. Changes in stratospheric temperature, humidity, and circulation patterns brought about by climate change could exacerbate polar ozone destruction processes. These issues are of particular concern in the Arctic, where wintertime temperatures often hover near the thresholds at which the processes leading to severe chlorine-catalyzed ozone destruction are triggered.
Aura MLS measures vertical profiles of many of the key species involved in polar processing and ozone loss in the lower stratosphere. In addition to temperature and ozone itself, MLS is providing the first simultaneous, collocated daily global measurements of both ClO, the primary form of reactive (ozone-destroying) chlorine in the stratosphere, and HCl, the main stratospheric chlorine reservoir (relatively inactive) species. MLS also measures two other minor chlorine species, HOCl and (in version 3) CH3Cl (the only significant natural source of organic chlorine).
In addition, MLS measures H2O and HNO3, the main components of the polar stratospheric clouds that form in the very low temperatures in the winter polar regions in both hemispheres; these cloud particles provide surfaces on which the heterogeneous chemical reactions that convert reservoir chlorine to reactive forms can take place, thus priming the atmosphere for severe ozone destruction.
N2O and CO are "tracers" of stratospheric air motions; MLS measurements of these species provide critical information needed to disentangle the effects of transport and mixing from those of chemical loss on the observed ozone distributions. Other MLS measurements that are arguably relevant for lower stratospheric polar processes and ozone loss include volcanic SO2 (for helping diagnose the influence of major volcanic eruptions on the ozone layer), and HCN, CH3CN, and cloud ice water content in the upper troposphere (for helping assess the impact of pollutants and other species lofted from below that may affect ozone chemistry in the stratosphere).
MLS-related publications concerning polar stratospheric ozone
Petropavlovskikh, I., K. Miyagawa, A. McClure-Beegle, B. Johnson, J. Wild, S. Strahan, K. Wargan, R. Querel, L. Flynn, E. Beach, G. Ancellet and S. Godin-Beekmann
Optimized Umkehr profile algorithm for ozone trend analyses
Rawat, P., M. Naja, E. Fishbein, P. Thapliyal, R. Kumar, P. Bhardwaj, A. Jaiswal, S. Tiwari, S. Venkataramani and S. Lal
Performance of AIRS ozone retrieval over the central Himalayas: Case studies of biomass burning, downward ozone transport and radiative forcing using long-term observations
Shi, G., W. Krochin, E. Sauvageat and G. Stober
Ozone and water vapor variability in the polar middle atmosphere observed with ground-based microwave radiometers
Environmental Science and Pollution Research in reviewVogel, A., J. Ungermann and H. Elbern
Analyzing trace gas filaments in the Ex-UTLS by 4D-variationalassimilation of airborne tomographic retrievals
Roy, C., A.R. Ravishankara, P. Newman, L. David, S. Fadnavis, S. Rathod, L. Lait, R. Krishnan, H. Clark and B. Sauvage
Estimation of Stratospheric Intrusions During Indian Cyclones
Solomon, S., K. Stone, P. Yu, D.M. Murphy, D. Kinnison, A.R. Ravishankara and P. Wang
Chlorine activation and enhanced ozone depletion induced by wildfire aerosol
Tencé, F., J. Jumelet, M. Bouillon, D. Cugnet, S. Bekki, S. Safieddine, P. Keckhut and A. Sarkissian
14 years of lidar measurements of polar stratospheric clouds at the French Antarctic station Dumont d'Urville
Wang, P., S. Solomon and K. Stone
Stratospheric chlorine processing after the 2020 Australian wildfires derived from satellite data
Ardra, D., J. Kuttippurath, R. Roy, P. Kumar, S. Raj, R. Müller and W. Feng
The Unprecedented Ozone Loss in the Arctic Winter and Spring of 2010/2011 and 2019/2020
Barras, E.M., A. Haefele, R. Stübi, A. Jouberton, H. Schill, I. Petropavlovskikh, K. Miyagawa, M. Stanek and L. Froidevaux
Dynamical linear modeling estimates of long-term ozone trends from homogenized Dobson Umkehr profiles at Arosa/Davos, Switzerland
Benito-Barca, S., N. Calvo and M. Abalos
Driving mechanisms for the El Niño–Southern Oscillation impact on stratospheric ozone
Blunden, J. and T. Boyer
State of the Climate in 2021
Dutta, R., S. S. and S. Ojha
Impact of stratospheric planetary wave and ozone variabilities on the austral polar middle atmospheric circulation
Eswaraiah, S., K. Seo, K. Kumar, M. Ratnam, A. Koval, J. Jeong, C. Mengist, Y. Lee, K. Greer, J. Hwang, W. Lee, M. Pramitha, G.V. Chalapathi, M.V. Reddy and Y. Kim
Anthropogenic Influence on the Antarctic Mesospheric Cooling Observed during the Southern Hemisphere Minor Sudden Stratospheric Warming
Fujiwara, M., G.L. Manney, L.J. Gray and J.S. Wright
SPARC Reanalysis Intercomparison Project S-RIP Final Report
n/a 2022Hulswar, S., P. Mohite and A. Mahajan
Quantifying stratospheric ozone loss over Antarctica in the last two decades using corrected satellite profiles
Lee, H., T. Choi, S. Kim, J. Bak, D. Ahn, N. Kramarova, S. Park, J. Kim and J. Koo
Validations of satellite ozone profiles in austral spring using ozonesonde measurements in the Jang Bogo station, Antarctica
Li, Y., S. Dhomse, M. Chipperfield, W. Feng, A. Chrysanthou, Y. Xia and D. Guo
Effects of reanalysis forcing fields on ozone trends and age of air from a chemical transport model
Roy, R., J. Kuttippurath, F. Lefèvre, S. Raj and P. Kumar
The sudden stratospheric warming and chemical ozone loss in the Antarctic winter 2019: comparison with the winters of 1988 and 2002
Salawitch, R. and L. McBride
Australian wildfires depleted the ozone layer
Santee, M.L., A. Lambert, G.L. Manney, N.J. Livesey, L. Froidevaux, J.L. Neu, M.J. Schwartz, L.F. Millán, F. Werner, W.G. Read, M. Park, R.A. Fuller and B.M. Ward
Prolonged and Pervasive Perturbations in the Composition of the Southern Hemisphere Midlatitude Lower Stratosphere From the Australian New Year's Fires
Shams, S.B., V. Walden, J. Hannigan, W. Randel, I. Petropavlovskikh, A. Butler and A.D.l. Cámara
Analyzing ozone variations and uncertainties at high latitudes during sudden stratospheric warming events using MERRA-2
Stauffer, R., A. Thompson, D. Kollonige, D. Tarasick, R.V. Malderen, H. Smit, H. Vömel, G. Morris, B. Johnson, P. Cullis, R. Stübi, J. Davies and M. Yan
An Examination of the Recent Stability of Ozonesonde Global Network Data
Strahan, S., L. Coy, A. Douglass and M. Damon
Faster Tropical Upper Stratospheric Upwelling Drives Changes in Ozone Chemistry
Strahan, S., D. Smale, S. Solomon, G. Taha, M. Damon, S. Steenrod, N. Jones, B. Liley, R. Querel and J. Robinson
Unexpected Repartitioning of Stratospheric Inorganic Chlorine After the 2020 Australian Wildfires
Sullivan, J., A. Apituley, N. Mettig, K. Kreher, K.E. Knowland, M. Allaart, A. Piters, M.V. Roozendael, P. Veefkind, J. Ziemke, N. Kramarova, M. Weber, A. Rozanov, L. Twigg, G. Sumnicht and T. McGee
Tropospheric and stratospheric ozone profiles during the 2019 TROpomi vaLIdation eXperiment TROLIX-19
Wespes, C., G. Ronsmans, L. Clarisse, S. Solomon, D. Hurtmans, C. Clerbaux and P. Coheur
Polar stratospheric nitric acid depletion surveyed from a decadal dataset of IASI total columns
Xiong, X., X. Liu, W. Wu, K.E. Knowland, Q. Yang, J. Welsh and D. Zhou
Satellite observation of stratospheric intrusions and ozone transport using CrIS on SNPP
Aabaribaoune, M.E., E. Emili and V. Guidard
Estimation of the error covariance matrix for IASI radiances and its impact on the assimilation of ozone in a chemistry transport model
Bazhenov, O.E., A.A. Nevzorov, A.V. Nevzorov, S.I. Dolgii and A.P. Makeev
Disturbance of the Stratosphere over Tomsk prior to the 2018 Major Sudden Stratospheric Warming: Effect of ClO Dimer Cycle
Blunden, J. and T. Boyer
State of the Climate in 2020
Dhomse, S., C. Arosio, W. Feng, A. Rozanov, M. Weber and M. Chipperfield
ML-TOMCAT: machine-learning-based satellite-corrected global stratospheric ozone profile data set from a chemical transport model
Dietmüller, S., H. Garny, R. Eichinger and W. Ball
Analysis of recent lower-stratospheric ozone trends in chemistry climate models
Emili, E. and M.E. Aabaribaoune
Impact of Infrared Atmospheric Sounding Interferometer IASI thermal infrared measurements on global ozone reanalyses
Feng, W., S. Dhomse, C. Arosio, M. Weber, J. Burrows, M. Santee and M. Chipperfield
Arctic Ozone Depletion in 2019/20: Roles of Chemistry, Dynamics and the Montreal Protocol
Gharibzadeh, M., A. Bidokhti and K. Alam
The interaction of ozone and aerosol in a semi-arid region in the Middle East: Ozone formation and radiative forcing implications
Gordon, E., A. Seppälä, B. Funke, J. Tamminen and K. Walker
Observational evidence of energetic particle precipitation NOx (EPP-NOx) interaction with chlorine curbing Antarctic ozone loss
Grooß, J. and R. Müller
Simulation of Record Arctic Stratospheric Ozone Depletion in 2020
Hu, D., Z. Guan, M. Liu and W. Feng
Dynamical mechanisms for the recent ozone depletion in the Arctic stratosphere linked to North Pacific sea surface temperatures
Hulswar, S., P. Mohite, V. Soni and A. Mahajan
Differences between in-situ ozonesonde observations and satellite retrieved ozone vertical profiles across Antarctica
Jenkins, G., V.D. Castro, B. Cunha, I. Fontanez and R. Holzworth
The Evolution of the Wave‐One Ozone Maximum During the 2017 LASIC Field Campaign at Ascension Island
Karpowicz, B., W. McCarty and K. Wargan
Investigating the utility of hyperspectral sounders in the 9.6 μm band to improve ozone analyses
Keeble, J., B. Hassler, A. Banerjee, R. Checa-Garcia, G. Chiodo, S. Davis, V. Eyring, P. Griffiths, O. Morgenstern, P. Nowack, G. Zeng, J. Zhang, G. Bodeker, S. Burrows, P. Cameron-Smith, D. Cugnet, C. Danek, M. Deushi, L. Horowitz, A. Kubin, L. Li, G. Lohmann, M. Michou, M. Mills, P. Nabat, D. Olivié, S. Park, O. Seland, J. Stoll, K. Wieners and T. Wu
Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
Kumar, K., B. Singh and Kumar, K.
Intriguing aspects of Asian Summer Monsoon Anticyclone Ozone variability from Microwave Limb Sounder measurements
Kuttippurath, J., W. Feng, R. Müller, P. Kumar, S. Raj, G. Gopikrishnan and R. Roy
Exceptional loss in ozone in the Arctic winter/spring of 2019/2020
Liu, M. and D. Hu
Contrast relationships between Arctic Oscillation and ozone in the stratosphere over the Arctic in early and mid‐to‐late winter
Lu, J., F. Xie, H. Tian and J. Luo
Impacts of Ozone Changes in the Tropopause Layer on Stratospheric Water Vapor
Rieger, L.A., W.J. Randel, A.E. Bourassa and S. Solomon
Stratospheric Temperature and Ozone Anomalies Associated With the 2020 Australian New Year Fires
Sepúlveda, E., R. Cordero, A. Damiani, S. Feron, J. Pizarro, F. Zamorano, R. Kivi, R. Sánchez, M. Yela, J. Jumelet, A. Godoy, J. Carrasco, J. Crespo, G. Seckmeyer, J. Jorquera, J. Carrera, B. Valdevenito, S. Cabrera, A. Redondas and P. Rowe
Evaluation of Antarctic Ozone Profiles derived from OMPS-LP by using Balloon-borne Ozonesondes
Sofieva, V., M. Szeląg, J. Tamminen, E. Kyrölä, D. Degenstein, C. Roth, D. Zawada, A. Rozanov, C. Arosio, J. Burrows, M. Weber, A. Laeng, G. Stiller, T. von Clarmann, L. Froidevaux, N. Livesey, M. van Roozendael and C. Retscher
Measurement report: regional trends of stratospheric ozone evaluated using the MErged GRIdded Dataset of Ozone Profiles MEGRIDOP