MLS Research

Stratospheric Ozone (Global)

Contact Lucien Froidevaux

The stratospheric ozone (O3) layer (near 20 km altitude) is an absorber of ultraviolet light from the sun; this absorption protects humans from the potentially deadly effects of skin cancer, and can also shield animals and the marine food chain, as well as plants, from undesirable UV-related consequences.

Health effects tied to excessive UV exposure include skin cancer, cataracts, and a decline of the immune response system; while there are significant changes in average UV exposure from low to high latitudes, additional exposure (at any latitude) represents some increase in the risks. Decreases in the ozone layer have therefore been a cornerstone of atmospheric research for the past several decades, motivated by the realisation that industrial release of chlorofluorocarbon (CFC) gases at the Earth's surface were linked to a gradual depletion of the ozone layer, as well as the seasonal "ozone hole" phenomenon over Antarctica caused by enhancements in the ozone-destroying forms of chlorine and bromine in the northern hemisphere during the cold winter and spring periods.

The different variations in ozone between the northern and southern hemispheres are related to the interplay of dynamical and chemical effects. A circling whirlpool of winds isolates the so-called polar vortex region at high latitudes in winter. More vigorous wave activity in the North leads to a shorter-lived winter polar vortex than in the South, and this reduces the net ozone loss in the northern hemisphere.

On a global scale, ozone depletion is typically measured with respect to pre-1980 abundances; values of overhead (column) ozone abundances in the past few years have been lower than the pre-1980 levels by 3 to 6% (for mid- to high latitudes in the North and South, respectively).

Thanks to internationally-agreed reductions in CFC emissions after the 1987 Montreal Protocol on Subtances that Deplete the Ozone Layer (with its many subsequent amendments), global ozone is expected to recover to pre-1980 levels in the 2nd half of the 21st century. The slow recovery process arises because of the very long lifetime of the main CFC gases in the upper atmosphere (sunlight destroys these compounds very slowly).

There is mounting evidence that a slow path towards such a recovery is being achieved, although continued attention to unexpected chemistry and the variations in ozone is still a very useful endeavor.

MLS-related publications concerning global stratospheric ozone

  1. Petropavlovskikh, I., K. Miyagawa, A. McClure-Beegle, B. Johnson, J. Wild, S. Strahan, K. Wargan, R. Querel, L. Flynn, E. Beach, G. Ancellet and S. Godin-Beekmann
    Optimized Umkehr profile algorithm for ozone trend analyses
    Atmos. Chem. Phys. Discuss. doi:10.5194/amt-2021-203, in review
  2. Rawat, P., M. Naja, E. Fishbein, P. Thapliyal, R. Kumar, P. Bhardwaj, A. Jaiswal, S. Tiwari, S. Venkataramani and S. Lal
    Performance of AIRS ozone retrieval over the central Himalayas: Case studies of biomass burning, downward ozone transport and radiative forcing using long-term observations
    Atmospheric Measurement Techniques Discussions doi:10.5194/amt-2022-187, in review
  3. Shi, G., W. Krochin, E. Sauvageat and G. Stober
    Ozone and water vapor variability in the polar middle atmosphere observed with ground-based microwave radiometers
    Environmental Science and Pollution Research in review
  4. Vogel, A., J. Ungermann and H. Elbern
    Analyzing trace gas filaments in the Ex-UTLS by 4D-variationalassimilation of airborne tomographic retrievals
    Atmos. Chem. Phys. Discuss. doi:10.5194/acp-2017-308, in review
  5. Roy, C., A.R. Ravishankara, P. Newman, L. David, S. Fadnavis, S. Rathod, L. Lait, R. Krishnan, H. Clark and B. Sauvage
    Estimation of Stratospheric Intrusions During Indian Cyclones
    Journal of Geophysical Research: Atmospheres doi:10.1029/2022jd037519, 2023
  6. Solomon, S., K. Stone, P. Yu, D.M. Murphy, D. Kinnison, A.R. Ravishankara and P. Wang
    Chlorine activation and enhanced ozone depletion induced by wildfire aerosol
  7. Wang, P., S. Solomon and K. Stone
    Stratospheric chlorine processing after the 2020 Australian wildfires derived from satellite data
    Proc. Nat. Acad. Sci. doi:10.1073/pnas.2213910120, 2023
  8. Barras, E.M., A. Haefele, R. Stübi, A. Jouberton, H. Schill, I. Petropavlovskikh, K. Miyagawa, M. Stanek and L. Froidevaux
    Dynamical linear modeling estimates of long-term ozone trends from homogenized Dobson Umkehr profiles at Arosa/Davos, Switzerland
    Atmos. Chem. Phys. doi:10.5194/acp-22-14283-2022, 2022
  9. Benito-Barca, S., N. Calvo and M. Abalos
    Driving mechanisms for the El Niño–Southern Oscillation impact on stratospheric ozone
    Atmos. Chem. Phys. 10.5194/acp-22-15729-2022, 2022
  10. Blunden, J. and T. Boyer
    State of the Climate in 2021
    Bull. Am. Meteorol. Soc. doi:10.1175/2022bamsstateoftheclimate.1, 2022
  11. Chipperfield, M., A. Chrysanthou, R. Damadeo, M. Dameris, S. Dhomse, V. Fioletov, S. Frith, S. Godin-Beekmann, B. Hassler, J. Liu, R. Müller, I. Petropavlovskikh, M. Santee, R. Stauffer, D. Tarasick, A. Thompson, M. Weber and P. Young
    Comment on “Observation of large and all-season ozone losses over the tropics” [AIP Adv. 12, 075006 2022]
    AIP Advances doi:10.1063/5.0121723, 2022
  12. Eswaraiah, S., K. Seo, K. Kumar, M. Ratnam, A. Koval, J. Jeong, C. Mengist, Y. Lee, K. Greer, J. Hwang, W. Lee, M. Pramitha, G.V. Chalapathi, M.V. Reddy and Y. Kim
    Anthropogenic Influence on the Antarctic Mesospheric Cooling Observed during the Southern Hemisphere Minor Sudden Stratospheric Warming
    Atmosphere doi:10.3390/atmos13091475, 2022
  13. Fujiwara, M., G.L. Manney, L.J. Gray and J.S. Wright
    SPARC Reanalysis Intercomparison Project S-RIP Final Report
    n/a 2022
  14. Li, Y., S. Dhomse, M. Chipperfield, W. Feng, A. Chrysanthou, Y. Xia and D. Guo
    Effects of reanalysis forcing fields on ozone trends and age of air from a chemical transport model
    Atmos. Chem. Phys. doi:10.5194/acp-22-10635-2022, 2022
  15. Lu, Q.
    Observation of large and all-season ozone losses over the tropics
    AIP Advances doi:10.1063/5.0094629, 2022
  16. Lu, Q.
    Response to “Comment on ‘Observation of large and all-season ozone losses over the tropics’” [AIP Adv. 12, 075006 2022]
    AIP Advances doi:10.1063/5.0129344, 2022
  17. Salawitch, R. and L. McBride
    Australian wildfires depleted the ozone layer
  18. Santee, M.L., A. Lambert, G.L. Manney, N.J. Livesey, L. Froidevaux, J.L. Neu, M.J. Schwartz, L.F. Millán, F. Werner, W.G. Read, M. Park, R.A. Fuller and B.M. Ward
    Prolonged and Pervasive Perturbations in the Composition of the Southern Hemisphere Midlatitude Lower Stratosphere From the Australian New Year's Fires
    Geophys. Res. Lett. doi:10.1029/2021gl096270, 2022
  19. Shams, S.B., V. Walden, J. Hannigan, W. Randel, I. Petropavlovskikh, A. Butler and A.D.l. Cámara
    Analyzing ozone variations and uncertainties at high latitudes during sudden stratospheric warming events using MERRA-2
    Atmos. Chem. Phys. doi:10.5194/acp-22-5435-2022, 2022
  20. Stauffer, R., A. Thompson, D. Kollonige, D. Tarasick, R.V. Malderen, H. Smit, H. Vömel, G. Morris, B. Johnson, P. Cullis, R. Stübi, J. Davies and M. Yan
    An Examination of the Recent Stability of Ozonesonde Global Network Data
    Earth and Space Science doi:10.1029/2022ea002459, 2022
  21. Strahan, S., L. Coy, A. Douglass and M. Damon
    Faster Tropical Upper Stratospheric Upwelling Drives Changes in Ozone Chemistry
    Geophys. Res. Lett. doi:10.1029/2022gl101075, 2022
  22. Strahan, S., D. Smale, S. Solomon, G. Taha, M. Damon, S. Steenrod, N. Jones, B. Liley, R. Querel and J. Robinson
    Unexpected Repartitioning of Stratospheric Inorganic Chlorine After the 2020 Australian Wildfires
    Geophys. Res. Lett. doi:10.1029/2022gl098290, 2022
  23. Sullivan, J., A. Apituley, N. Mettig, K. Kreher, K.E. Knowland, M. Allaart, A. Piters, M.V. Roozendael, P. Veefkind, J. Ziemke, N. Kramarova, M. Weber, A. Rozanov, L. Twigg, G. Sumnicht and T. McGee
    Tropospheric and stratospheric ozone profiles during the 2019 TROpomi vaLIdation eXperiment TROLIX-19
    Atmos. Chem. Phys. doi:10.5194/acp-22-11137-2022, 2022
  24. Wespes, C., G. Ronsmans, L. Clarisse, S. Solomon, D. Hurtmans, C. Clerbaux and P. Coheur
    Polar stratospheric nitric acid depletion surveyed from a decadal dataset of IASI total columns
    Atmos. Chem. Phys. doi:10.5194/acp-22-10993-2022, 2022
  25. Xiong, X., X. Liu, W. Wu, K.E. Knowland, Q. Yang, J. Welsh and D. Zhou
    Satellite observation of stratospheric intrusions and ozone transport using CrIS on SNPP
    Atmospheric Environment doi:10.1016/j.atmosenv.2022.118956, 2022
  26. Aabaribaoune, M.E., E. Emili and V. Guidard
    Estimation of the error covariance matrix for IASI radiances and its impact on the assimilation of ozone in a chemistry transport model
    Atmospheric Measurement Techniques doi:10.5194/amt-14-2841-2021, 2021
  27. Blunden, J. and T. Boyer
    State of the Climate in 2020
    Bull. Am. Meteorol. Soc. doi:10.1175/2021bamsstateoftheclimate.1, 2021
  28. Chandran, P.R.S., S.V. Sunilkumar, M. Muhsin, M. Emmanuel, G. Ramkumar and P. Nair
    Effect of meteorology on the variability of ozone in the troposphere and lower stratosphere over a tropical station Thumba 8.5°N, 76.9°E
    J. Atmos. Solar-Terr. Phys. doi:10.1016/j.jastp.2021.105567, 2021
  29. Dhomse, S., C. Arosio, W. Feng, A. Rozanov, M. Weber and M. Chipperfield
    ML-TOMCAT: machine-learning-based satellite-corrected global stratospheric ozone profile data set from a chemical transport model
    Earth System Science Data 10.5194/essd-13-5711-2021, 2021
  30. Dietmüller, S., H. Garny, R. Eichinger and W. Ball
    Analysis of recent lower-stratospheric ozone trends in chemistry climate models
    Atmos. Chem. Phys. doi:10.5194/acp-21-6811-2021, 2021
  31. Emili, E. and M.E. Aabaribaoune
    Impact of Infrared Atmospheric Sounding Interferometer IASI thermal infrared measurements on global ozone reanalyses
    Geoscientific Model Development doi:10.5194/gmd-14-6291-2021, 2021
  32. Errera, Q., E. Dekemper, N. Baker, J. Debosscher, P. Demoulin, N. Mateshvili, D. Pieroux, F. Vanhellemont and D. Fussen
    On the capability of the future ALTIUS ultraviolet–visible–near-infrared limb sounder to constrain modelled stratospheric ozone
    Atmospheric Measurement Techniques doi:10.5194/amt-14-4737-2021, 2021
  33. Gharibzadeh, M., A. Bidokhti and K. Alam
    The interaction of ozone and aerosol in a semi-arid region in the Middle East: Ozone formation and radiative forcing implications
    Atmospheric Environment doi:10.1016/j.atmosenv.2020.118015, 2021
  34. Gordon, E., A. Seppälä, B. Funke, J. Tamminen and K. Walker
    Observational evidence of energetic particle precipitation NOx (EPP-NOx) interaction with chlorine curbing Antarctic ozone loss
    Atmos. Chem. Phys. doi:10.5194/acp-21-2819-2021, 2021
  35. Jenkins, G., V.D. Castro, B. Cunha, I. Fontanez and R. Holzworth
    The Evolution of the Wave‐One Ozone Maximum During the 2017 LASIC Field Campaign at Ascension Island
    Journal of Geophysical Research: Atmospheres doi:10.1029/2020jd033972, 2021
  36. Karpowicz, B., W. McCarty and K. Wargan
    Investigating the utility of hyperspectral sounders in the 9.6 μm band to improve ozone analyses
    Q. J. Roy. Meteorol. Soc. doi:10.1002/qj.4198, 2021
  37. Keeble, J., B. Hassler, A. Banerjee, R. Checa-Garcia, G. Chiodo, S. Davis, V. Eyring, P. Griffiths, O. Morgenstern, P. Nowack, G. Zeng, J. Zhang, G. Bodeker, S. Burrows, P. Cameron-Smith, D. Cugnet, C. Danek, M. Deushi, L. Horowitz, A. Kubin, L. Li, G. Lohmann, M. Michou, M. Mills, P. Nabat, D. Olivié, S. Park, O. Seland, J. Stoll, K. Wieners and T. Wu
    Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
    Atmos. Chem. Phys. doi:10.5194/acp-21-5015-2021, 2021
  38. Kumar, K., B. Singh and Kumar, K.
    Intriguing aspects of Asian Summer Monsoon Anticyclone Ozone variability from Microwave Limb Sounder measurements
    Atmos. Res. 10.1016/j.atmosres.2021.105479, 2021
  39. Liu, M. and D. Hu
    Contrast relationships between Arctic Oscillation and ozone in the stratosphere over the Arctic in early and mid‐to‐late winter
    Journal of Geophysical Research: Atmospheres doi:10.1029/2020jd033426, 2021
  40. Liu, M. and D. Hu
    Different Relationships between Arctic Oscillation and Ozone in the Stratosphere over the Arctic in January and February
    Atmosphere doi:10.3390/atmos12020129, 2021
  41. Lu, J., F. Xie, H. Tian and J. Luo
    Impacts of Ozone Changes in the Tropopause Layer on Stratospheric Water Vapor
    Atmosphere doi:10.3390/atmos12030291, 2021
  42. Nilsen, K., A. Kero, P.T. Verronen, M.E. Szeląg, N. Kalakoski and J. Jia
    Sensitivity of Middle Atmospheric Ozone to Solar Proton Events: A Comparison Between a Climate Model and Satellites
    Journal of Geophysical Research: Atmospheres doi:10.1029/2021jd034549, 2021
  43. Preez, D.J.d., H. Bencherif, T. Portafaix, K. Lamy and C. Wright
    Solar Ultraviolet Radiation in Pretoria and Its Relations to Aerosols and Tropospheric Ozone during the Biomass Burning Season
    Atmosphere doi:10.3390/atmos12020132, 2021
  44. Rieger, L.A., W.J. Randel, A.E. Bourassa and S. Solomon
    Stratospheric Temperature and Ozone Anomalies Associated With the 2020 Australian New Year Fires
    Geophys. Res. Lett. doi:10.1029/2021gl095898, 2021
  45. Sepúlveda, E., R. Cordero, A. Damiani, S. Feron, J. Pizarro, F. Zamorano, R. Kivi, R. Sánchez, M. Yela, J. Jumelet, A. Godoy, J. Carrasco, J. Crespo, G. Seckmeyer, J. Jorquera, J. Carrera, B. Valdevenito, S. Cabrera, A. Redondas and P. Rowe
    Evaluation of Antarctic Ozone Profiles derived from OMPS-LP by using Balloon-borne Ozonesondes
    Scientific Reports doi:10.1038/s41598-021-81954-6, 2021
  46. Sofieva, V., M. Szeląg, J. Tamminen, E. Kyrölä, D. Degenstein, C. Roth, D. Zawada, A. Rozanov, C. Arosio, J. Burrows, M. Weber, A. Laeng, G. Stiller, T. von Clarmann, L. Froidevaux, N. Livesey, M. van Roozendael and C. Retscher
    Measurement report: regional trends of stratospheric ozone evaluated using the MErged GRIdded Dataset of Ozone Profiles MEGRIDOP
    Atmos. Chem. Phys. doi:10.5194/acp-21-6707-2021, 2021
  47. Steiner, M., B. Luo, T. Peter, M. Pitts and A. Stenke
    Evaluation of polar stratospheric clouds in the global chemistry–climate model SOCOLv3.1 by comparison with CALIPSO spaceborne lidar measurements
    Geoscientific Model Development doi:10.5194/gmd-14-935-2021, 2021
  48. Sukhodolov, T., T. Egorova, A. Stenke, W. Ball, C. Brodowsky, G. Chiodo, A. Feinberg, M. Friedel, A. Karagodin-Doyennel, T. Peter, J. Sedlacek, S. Vattioni and E. Rozanov
    Atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0: description and evaluation
    Geoscientific Model Development doi:10.5194/gmd-14-5525-2021, 2021
  49. Tang, Q., M. Prather, J. Hsu, D. Ruiz, P. Cameron-Smith, S. Xie and J. Golaz
    Evaluation of the interactive stratospheric ozone O3v2 module in the E3SM version 1 Earth system model
    Geoscientific Model Development doi:10.5194/gmd-14-1219-2021, 2021
  50. von Gathen, P.D., R. Kivi, I. Wohltmann, R. Salawitch and M. Rex
    Climate change favours large seasonal loss of Arctic ozone
    Nature Communications doi:10.1038/s41467-021-24089-6, 2021