MLS Research
Stratospheric Ozone (Global)
Contact Lucien Froidevaux
The stratospheric ozone (O3) layer (near 20 km altitude) is an absorber of ultraviolet light from the sun; this absorption protects humans from the potentially deadly effects of skin cancer, and can also shield animals and the marine food chain, as well as plants, from undesirable UV-related consequences.
Health effects tied to excessive UV exposure include skin cancer, cataracts, and a decline of the immune response system; while there are significant changes in average UV exposure from low to high latitudes, additional exposure (at any latitude) represents some increase in the risks. Decreases in the ozone layer have therefore been a cornerstone of atmospheric research for the past several decades, motivated by the realisation that industrial release of chlorofluorocarbon (CFC) gases at the Earth's surface were linked to a gradual depletion of the ozone layer, as well as the seasonal "ozone hole" phenomenon over Antarctica caused by enhancements in the ozone-destroying forms of chlorine and bromine in the northern hemisphere during the cold winter and spring periods.
The different variations in ozone between the northern and southern hemispheres are related to the interplay of dynamical and chemical effects. A circling whirlpool of winds isolates the so-called polar vortex region at high latitudes in winter. More vigorous wave activity in the North leads to a shorter-lived winter polar vortex than in the South, and this reduces the net ozone loss in the northern hemisphere.
On a global scale, ozone depletion is typically measured with respect to pre-1980 abundances; values of overhead (column) ozone abundances in the past few years have been lower than the pre-1980 levels by 3 to 6% (for mid- to high latitudes in the North and South, respectively).
Thanks to internationally-agreed reductions in CFC emissions after the 1987 Montreal Protocol on Subtances that Deplete the Ozone Layer (with its many subsequent amendments), global ozone is expected to recover to pre-1980 levels in the 2nd half of the 21st century. The slow recovery process arises because of the very long lifetime of the main CFC gases in the upper atmosphere (sunlight destroys these compounds very slowly).
There is mounting evidence that a slow path towards such a recovery is being achieved, although continued attention to unexpected chemistry and the variations in ozone is still a very useful endeavor.
MLS-related publications concerning global stratospheric ozone
Petropavlovskikh, I., K. Miyagawa, A. McClure-Beegle, B. Johnson, J. Wild, S. Strahan, K. Wargan, R. Querel, L. Flynn, E. Beach, G. Ancellet and S. Godin-Beekmann
Optimized Umkehr profile algorithm for ozone trend analyses
Rawat, P., M. Naja, E. Fishbein, P. Thapliyal, R. Kumar, P. Bhardwaj, A. Jaiswal, S. Tiwari, S. Venkataramani and S. Lal
Performance of AIRS ozone retrieval over the central Himalayas: Case studies of biomass burning, downward ozone transport and radiative forcing using long-term observations
Shi, G., W. Krochin, E. Sauvageat and G. Stober
Ozone and water vapor variability in the polar middle atmosphere observed with ground-based microwave radiometers
Environmental Science and Pollution Research in reviewVogel, A., J. Ungermann and H. Elbern
Analyzing trace gas filaments in the Ex-UTLS by 4D-variationalassimilation of airborne tomographic retrievals
Roy, C., A.R. Ravishankara, P. Newman, L. David, S. Fadnavis, S. Rathod, L. Lait, R. Krishnan, H. Clark and B. Sauvage
Estimation of Stratospheric Intrusions During Indian Cyclones
Solomon, S., K. Stone, P. Yu, D.M. Murphy, D. Kinnison, A.R. Ravishankara and P. Wang
Chlorine activation and enhanced ozone depletion induced by wildfire aerosol
Wang, P., S. Solomon and K. Stone
Stratospheric chlorine processing after the 2020 Australian wildfires derived from satellite data
Barras, E.M., A. Haefele, R. Stübi, A. Jouberton, H. Schill, I. Petropavlovskikh, K. Miyagawa, M. Stanek and L. Froidevaux
Dynamical linear modeling estimates of long-term ozone trends from homogenized Dobson Umkehr profiles at Arosa/Davos, Switzerland
Benito-Barca, S., N. Calvo and M. Abalos
Driving mechanisms for the El Niño–Southern Oscillation impact on stratospheric ozone
Blunden, J. and T. Boyer
State of the Climate in 2021
Chipperfield, M., A. Chrysanthou, R. Damadeo, M. Dameris, S. Dhomse, V. Fioletov, S. Frith, S. Godin-Beekmann, B. Hassler, J. Liu, R. Müller, I. Petropavlovskikh, M. Santee, R. Stauffer, D. Tarasick, A. Thompson, M. Weber and P. Young
Comment on “Observation of large and all-season ozone losses over the tropics” [AIP Adv. 12, 075006 2022]
Eswaraiah, S., K. Seo, K. Kumar, M. Ratnam, A. Koval, J. Jeong, C. Mengist, Y. Lee, K. Greer, J. Hwang, W. Lee, M. Pramitha, G.V. Chalapathi, M.V. Reddy and Y. Kim
Anthropogenic Influence on the Antarctic Mesospheric Cooling Observed during the Southern Hemisphere Minor Sudden Stratospheric Warming
Fujiwara, M., G.L. Manney, L.J. Gray and J.S. Wright
SPARC Reanalysis Intercomparison Project S-RIP Final Report
n/a 2022Li, Y., S. Dhomse, M. Chipperfield, W. Feng, A. Chrysanthou, Y. Xia and D. Guo
Effects of reanalysis forcing fields on ozone trends and age of air from a chemical transport model
Lu, Q.
Observation of large and all-season ozone losses over the tropics
Lu, Q.
Response to “Comment on ‘Observation of large and all-season ozone losses over the tropics’” [AIP Adv. 12, 075006 2022]
Salawitch, R. and L. McBride
Australian wildfires depleted the ozone layer
Santee, M.L., A. Lambert, G.L. Manney, N.J. Livesey, L. Froidevaux, J.L. Neu, M.J. Schwartz, L.F. Millán, F. Werner, W.G. Read, M. Park, R.A. Fuller and B.M. Ward
Prolonged and Pervasive Perturbations in the Composition of the Southern Hemisphere Midlatitude Lower Stratosphere From the Australian New Year's Fires
Shams, S.B., V. Walden, J. Hannigan, W. Randel, I. Petropavlovskikh, A. Butler and A.D.l. Cámara
Analyzing ozone variations and uncertainties at high latitudes during sudden stratospheric warming events using MERRA-2
Stauffer, R., A. Thompson, D. Kollonige, D. Tarasick, R.V. Malderen, H. Smit, H. Vömel, G. Morris, B. Johnson, P. Cullis, R. Stübi, J. Davies and M. Yan
An Examination of the Recent Stability of Ozonesonde Global Network Data
Strahan, S., L. Coy, A. Douglass and M. Damon
Faster Tropical Upper Stratospheric Upwelling Drives Changes in Ozone Chemistry
Strahan, S., D. Smale, S. Solomon, G. Taha, M. Damon, S. Steenrod, N. Jones, B. Liley, R. Querel and J. Robinson
Unexpected Repartitioning of Stratospheric Inorganic Chlorine After the 2020 Australian Wildfires
Sullivan, J., A. Apituley, N. Mettig, K. Kreher, K.E. Knowland, M. Allaart, A. Piters, M.V. Roozendael, P. Veefkind, J. Ziemke, N. Kramarova, M. Weber, A. Rozanov, L. Twigg, G. Sumnicht and T. McGee
Tropospheric and stratospheric ozone profiles during the 2019 TROpomi vaLIdation eXperiment TROLIX-19
Wespes, C., G. Ronsmans, L. Clarisse, S. Solomon, D. Hurtmans, C. Clerbaux and P. Coheur
Polar stratospheric nitric acid depletion surveyed from a decadal dataset of IASI total columns
Xiong, X., X. Liu, W. Wu, K.E. Knowland, Q. Yang, J. Welsh and D. Zhou
Satellite observation of stratospheric intrusions and ozone transport using CrIS on SNPP
Aabaribaoune, M.E., E. Emili and V. Guidard
Estimation of the error covariance matrix for IASI radiances and its impact on the assimilation of ozone in a chemistry transport model
Blunden, J. and T. Boyer
State of the Climate in 2020
Chandran, P.R.S., S.V. Sunilkumar, M. Muhsin, M. Emmanuel, G. Ramkumar and P. Nair
Effect of meteorology on the variability of ozone in the troposphere and lower stratosphere over a tropical station Thumba 8.5°N, 76.9°E
Dhomse, S., C. Arosio, W. Feng, A. Rozanov, M. Weber and M. Chipperfield
ML-TOMCAT: machine-learning-based satellite-corrected global stratospheric ozone profile data set from a chemical transport model
Dietmüller, S., H. Garny, R. Eichinger and W. Ball
Analysis of recent lower-stratospheric ozone trends in chemistry climate models
Emili, E. and M.E. Aabaribaoune
Impact of Infrared Atmospheric Sounding Interferometer IASI thermal infrared measurements on global ozone reanalyses
Errera, Q., E. Dekemper, N. Baker, J. Debosscher, P. Demoulin, N. Mateshvili, D. Pieroux, F. Vanhellemont and D. Fussen
On the capability of the future ALTIUS ultraviolet–visible–near-infrared limb sounder to constrain modelled stratospheric ozone
Gharibzadeh, M., A. Bidokhti and K. Alam
The interaction of ozone and aerosol in a semi-arid region in the Middle East: Ozone formation and radiative forcing implications
Gordon, E., A. Seppälä, B. Funke, J. Tamminen and K. Walker
Observational evidence of energetic particle precipitation NOx (EPP-NOx) interaction with chlorine curbing Antarctic ozone loss
Jenkins, G., V.D. Castro, B. Cunha, I. Fontanez and R. Holzworth
The Evolution of the Wave‐One Ozone Maximum During the 2017 LASIC Field Campaign at Ascension Island
Karpowicz, B., W. McCarty and K. Wargan
Investigating the utility of hyperspectral sounders in the 9.6 μm band to improve ozone analyses
Keeble, J., B. Hassler, A. Banerjee, R. Checa-Garcia, G. Chiodo, S. Davis, V. Eyring, P. Griffiths, O. Morgenstern, P. Nowack, G. Zeng, J. Zhang, G. Bodeker, S. Burrows, P. Cameron-Smith, D. Cugnet, C. Danek, M. Deushi, L. Horowitz, A. Kubin, L. Li, G. Lohmann, M. Michou, M. Mills, P. Nabat, D. Olivié, S. Park, O. Seland, J. Stoll, K. Wieners and T. Wu
Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
Kumar, K., B. Singh and Kumar, K.
Intriguing aspects of Asian Summer Monsoon Anticyclone Ozone variability from Microwave Limb Sounder measurements
Liu, M. and D. Hu
Contrast relationships between Arctic Oscillation and ozone in the stratosphere over the Arctic in early and mid‐to‐late winter
Liu, M. and D. Hu
Different Relationships between Arctic Oscillation and Ozone in the Stratosphere over the Arctic in January and February
Lu, J., F. Xie, H. Tian and J. Luo
Impacts of Ozone Changes in the Tropopause Layer on Stratospheric Water Vapor
Nilsen, K., A. Kero, P.T. Verronen, M.E. Szeląg, N. Kalakoski and J. Jia
Sensitivity of Middle Atmospheric Ozone to Solar Proton Events: A Comparison Between a Climate Model and Satellites
Preez, D.J.d., H. Bencherif, T. Portafaix, K. Lamy and C. Wright
Solar Ultraviolet Radiation in Pretoria and Its Relations to Aerosols and Tropospheric Ozone during the Biomass Burning Season
Rieger, L.A., W.J. Randel, A.E. Bourassa and S. Solomon
Stratospheric Temperature and Ozone Anomalies Associated With the 2020 Australian New Year Fires
Sepúlveda, E., R. Cordero, A. Damiani, S. Feron, J. Pizarro, F. Zamorano, R. Kivi, R. Sánchez, M. Yela, J. Jumelet, A. Godoy, J. Carrasco, J. Crespo, G. Seckmeyer, J. Jorquera, J. Carrera, B. Valdevenito, S. Cabrera, A. Redondas and P. Rowe
Evaluation of Antarctic Ozone Profiles derived from OMPS-LP by using Balloon-borne Ozonesondes
Sofieva, V., M. Szeląg, J. Tamminen, E. Kyrölä, D. Degenstein, C. Roth, D. Zawada, A. Rozanov, C. Arosio, J. Burrows, M. Weber, A. Laeng, G. Stiller, T. von Clarmann, L. Froidevaux, N. Livesey, M. van Roozendael and C. Retscher
Measurement report: regional trends of stratospheric ozone evaluated using the MErged GRIdded Dataset of Ozone Profiles MEGRIDOP
Steiner, M., B. Luo, T. Peter, M. Pitts and A. Stenke
Evaluation of polar stratospheric clouds in the global chemistry–climate model SOCOLv3.1 by comparison with CALIPSO spaceborne lidar measurements
Sukhodolov, T., T. Egorova, A. Stenke, W. Ball, C. Brodowsky, G. Chiodo, A. Feinberg, M. Friedel, A. Karagodin-Doyennel, T. Peter, J. Sedlacek, S. Vattioni and E. Rozanov
Atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0: description and evaluation
Tang, Q., M. Prather, J. Hsu, D. Ruiz, P. Cameron-Smith, S. Xie and J. Golaz
Evaluation of the interactive stratospheric ozone O3v2 module in the E3SM version 1 Earth system model
von Gathen, P.D., R. Kivi, I. Wohltmann, R. Salawitch and M. Rex
Climate change favours large seasonal loss of Arctic ozone