MLS Research

Solar Effects on the Atmosphere

Contact Luis Millan

The best-known solar effects that lead to variability of atmospheric composition and temperature include the 11-year solar cycle, the 27-day solar cycle, and the solar energetic particle (SEP) events.

The solar 11-year cycle, characterized by the change in the frequency of sunspots, is the major periodic solar variation. Although the corresponding change in the total solar irradiance (TSI) is only about 0.1%, the change in the solar UV flux increases rapidly with decreasing wavelength (from a few percent at 200 nm to several tens of percent at 120nm, the Lyman α region) and greatly affects Earth's atmosphere.

The change of solar flux over the solar 27-day cycle, which originates from the rotation of the Sun, has a similar wavelength-dependence but a smaller magnitude. The observations of various atmospheric responses such as trace gases, temperature, humidity, and circulation to both solar cycles have been reported.

Solar variability over other time scales has also been reported but with much weaker signals. The corresponding impacts on atmospheric chemistry, dynamics, and the climate are not fully understood, e.g., given the discrepancies between the observed and modeled magnitudes of the atmospheric responses. MLS observations of the middle atmosphere, e.g., O3, H2O, OH, HO2, CO, temperature, and geopotential height, have made a significant contribution to our understanding of solar effects on Earth's atmosphere.

Signals of both the 11-year solar cycle and the 27-day solar cycle have been extracted from MLS observations from the mesosphere to the upper troposphere. Ongoing investigations should lead to a better understanding of the mechanisms by which solar activity influences the natural variability of Earth's atmosphere.

In particular, we are currently in the midst of a prolonged solar minimum between solar cycles 23 and 24. Compared to previously recorded solar minimums (1976, 1986, and 1996), the current solar minimum (2008-2009) is unusually prolonged, with a record number of sunspot-free days in the history of satellite measurements since the 1970s.

Anomalously low upper atmospheric temperature and low levels of O3, CO, and OH in MLS observations during the current solar minimum also point to exceptionally low solar output. Reduced solar UV irradiance and the corresponding low levels of O3 could affect the recovery from O3 depletion by anthropogenic CFCs. These changes due to solar effects should be factored in when studying the climate change related to accumulated greenhouse gases in the upper atmosphere.

During solar energetic particle (SEP) events, which are also known as the energetic particle precipitation (EPP), high-energy protons, electrons, and ions originating from strong solar activity (e.g. solar flares) reach Earth's atmosphere, leading to changes in atmospheric composition.

In particular, solar proton events (SPEs) deposit energetic protons at high geomagnetic latitudes and trigger short-term changes in the distribution of many chemical species such as O3, OH, HO2, HNO3, N2O, and potentially ClO and HOCl. For example, OH responds rapidly to the proton forcing due to its short chemical lifetime and the negligible impact from transport. MLS mesospheric observations have shown strong enhancement of nighttime OH in polar regions during SPEs and the corresponding rapid decrease of O3 due to catalytic O3 destruction reactions.

MLS-related publications concerning solar effects on the atmosphere

  1. Qiu, S., M. Yuan, W. Soon, V.V. Herrera, Z. Zhang, C. Yang, H. Yousof and X. Dou
    Solar-induced 27-day modulation on polar mesospheric cloud PMC, based on combined observations from SOFIE and MLS
    Front. Astron. Space Sci. doi:10.3389/fspas.2023.1168841, 2023
  2. Thurairajah, B., S. Bailey, V.L. Harvey, C. Randall and J. France
    The Role of the Quasi 5‐Day Wave on the Onset of Polar Mesospheric Cloud Seasons in the Northern Hemisphere
    Journal of Geophysical Research: Atmospheres doi:10.1029/2022jd037982, 2023
  3. Dhomse, S., M. Chipperfield, W. Feng, R. Hossaini, G. Mann, M. Santee and M. Weber
    A single-peak-structured solar cycle signal in stratospheric ozone based on Microwave Limb Sounder observations and model simulations
    Atmos. Chem. Phys. doi:10.5194/acp-22-903-2022, 2022
  4. Fujiwara, M., G.L. Manney, L.J. Gray and J.S. Wright
    SPARC Reanalysis Intercomparison Project S-RIP Final Report
    n/a 2022
  5. Lee, K., J. Kim and Y. Kwak
    Relation of pandemics with solar cycles through ozone, cloud seeds, and vitamin D
    Environmental Science and Pollution Research doi:10.1007/s11356-022-22982-1, 2022
  6. Mironova, I., M. Sinnhuber, G. Bazilevskaya, M. Clilverd, B. Funke, V. Makhmutov, E. Rozanov, M. Santee, T. Sukhodolov and T. Ulich
    Exceptional middle latitude electron precipitation detected by balloon observations: implications for atmospheric composition
    Atmos. Chem. Phys. doi:10.5194/acp-22-6703-2022, 2022
  7. Santee, M.L., A. Lambert, G.L. Manney, N.J. Livesey, L. Froidevaux, J.L. Neu, M.J. Schwartz, L.F. Millán, F. Werner, W.G. Read, M. Park, R.A. Fuller and B.M. Ward
    Prolonged and Pervasive Perturbations in the Composition of the Southern Hemisphere Midlatitude Lower Stratosphere From the Australian New Year's Fires
    Geophys. Res. Lett. doi:10.1029/2021gl096270, 2022
  8. Emmert, J.T., D.P. Drob, J.M. Picone, D.E. Siskind, M. Jones, M.G. Mlynczak, P.F. Bernath, X. Chu, E. Doornbos, B. Funke, L.P. Goncharenko, M.E. Hervig, M.J. Schwartz, P.E. Sheese, F. Vargas, B.P. Williams and T. Yuan
    NRLMSIS 2.0: A Whole‐Atmosphere Empirical Model of Temperature and Neutral Species Densities
    Earth and Space Science doi:10.1029/2020ea001321, 2021
  9. Gordon, E., A. Seppälä, B. Funke, J. Tamminen and K. Walker
    Observational evidence of energetic particle precipitation NOx (EPP-NOx) interaction with chlorine curbing Antarctic ozone loss
    Atmos. Chem. Phys. doi:10.5194/acp-21-2819-2021, 2021
  10. Karagodin-Doyennel, A., E. Rozanov, A. Kuchar, W. Ball, P. Arsenovic, E. Remsberg, P. Jöckel, M. Kunze, D. Plummer, A. Stenke, D. Marsh, D. Kinnison and T. Peter
    The response of mesospheric H2O and CO to solar irradiance variability in models and observations
    Atmos. Chem. Phys. doi:10.5194/acp-21-201-2021, 2021
  11. Liu, G., S. England, C. Lin, N. Pedatella, J. Klenzing, C. Englert, B. Harding, T. Immel and D. Rowland
    Evaluation of Atmospheric 3‐Day Waves as a Source of Day‐to‐Day Variation of the Ionospheric Longitudinal Structure
    Geophys. Res. Lett. doi:10.1029/2021gl094877, 2021
  12. Macotela, E.L., M. Clilverd, T. Renkwitz, J. Chau, J. Manninen and D. Banyś
    Spring‐Fall Asymmetry in VLF Amplitudes Recorded in the North Atlantic Region: The Fall‐Effect
    Geophys. Res. Lett. doi:10.1029/2021gl094581, 2021
  13. Bencherif, H., A. Toihir, N. Mbatha, V. Sivakumar, D.D. Preez, N. Bègue and G. Coetzee
    Ozone Variability and Trend Estimates from 20-Years of Ground-Based and Satellite Observations at Irene Station, South Africa
    Atmosphere doi:10.3390/atmos11111216, 2020
  14. Gordon, E., A. Seppälä and J. Tamminen
    Evidence for energetic particle precipitation and quasi-biennial oscillation modulations of the Antarctic NO2 springtime stratospheric column from OMI observations
    Atmos. Chem. Phys. doi:10.5194/acp-20-6259-2020, 2020
  15. Jia, J., A. Kero, N. Kalakoski, M. Szeląg and P. Verronen
    Is there a direct solar proton impact on lower-stratospheric ozone?
    Atmos. Chem. Phys. doi:10.5194/acp-20-14969-2020, 2020
  16. Lee, J. and D. Wu
    Solar Cycle Modulation of Nighttime Ozone Near the Mesopause as Observed by MLS
    Earth and Space Science doi:10.1029/2019ea001063, 2020
  17. Rong, P., C. von Savigny, C. Zhang, C. Hoffmann and M. Schwartz
    Response of middle atmospheric temperature to the 27 d solar cycle: an analysis of 13 years of microwave limb sounder data
    Atmos. Chem. Phys. doi:10.5194/acp-20-1737-2020, 2020
  18. Arsenovic, P., A. Damiani, E. Rozanov, B. Funke, A. Stenke and T. Peter
    Reactive nitrogen (NOy) and ozone responses to energetic electron precipitation during Southern Hemisphere winter
    Atmos. Chem. Phys. 10.5194/acp-19-9485-2019, 2019
  19. Arsenovic, P., A. Damiani, E. Rozanov, B. Funke, A. Stenke and T. Peter
    Reactive nitrogen NOy and ozone responses to energetic electron precipitation during Southern Hemisphere winter
    Atmos. Chem. Phys. doi:10.5194/acp-19-9485-2019, 2019
  20. Ball, W.T., E.V. Rozanov, J. Alsing, D.R. Marsh, F. Tummon, D.J. Mortlock, D. Kinnison and J.D. Haigh
    The Upper Stratospheric Solar Cycle Ozone Response
    Geophys. Res. Lett. doi:10.1029/2018gl081501, 2019
  21. Korotyshkin, D., E. Merzlyakov, C. Jacobi, F. Lilienthal and Q. Wu
    Longitudinal MLT wind structure at higher mid-latitudes as seen by meteor radars at central and Eastern Europe 13°E/49°E
    Adv. Space Res. doi:10.1016/j.asr.2019.01.036, 2019
  22. Macotela, E., M. Clilverd, J. Manninen, T. Moffat-Griffin, D. Newnham, T. Raita and C. Rodger
    D-Region High-Latitude Forcing Factors
    Journal of Geophysical Research: Space Physics doi:10.1029/2018ja026049, 2019
  23. Wilhelm, S., G. Stober, V. Matthias, C. Jacobi and D. Murphy
    Connection between the length of day and wind measurements in the mesosphere and lower thermosphere at mid- and high latitudes
    Annales Geophysicae doi:10.5194/angeo-37-1-2019, 2019
  24. Zawedde, A., H.N. Tyssøy, J. Stadsnes and M. Sandanger
    Are EEP Events Important for the Tertiary Ozone Maximum?
    Journal of Geophysical Research: Space Physics doi:10.1029/2018ja026201, 2019
  25. Lee, J., G. Jee, Y. Kwak, S. Hong, H. Hwang, I. Song, Y. Lee, E. Turunen and D. Lee
    Responses of Nitrogen Oxide to High‐Speed Solar Wind Stream in the Polar Middle Atmosphere
    Journal of Geophysical Research: Space Physics doi:10.1029/2017ja025161, 2018
  26. Sukhodolov, T., J. Sheng, A. Feinberg, B. Luo, T. Peter, L. Revell, A. Stenke, D. Weisenstein and E. Rozanov
    Stratospheric aerosol evolution after Pinatubo simulated with a coupled size-resolved aerosol–chemistry–climate model, SOCOL-AERv1.0
    Geoscientific Model Development doi:10.5194/gmd-11-2633-2018, 2018
  27. Yamazaki, Y.
    Quasi‐6‐Day Wave Effects on the Equatorial Ionization Anomaly Over a Solar Cycle
    Journal of Geophysical Research: Space Physics doi:10.1029/2018ja026014, 2018
  28. Yi, W., I. Reid, X. Xue, D. Murphy, C. Hall, M. Tsutsumi, B. Ning, G. Li, J. Younger, T. Chen and X. Dou
    High- and Middle-Latitude Neutral Mesospheric Density Response to Geomagnetic Storms
    Geophys. Res. Lett. doi:10.1002/2017gl076282, 2018
  29. Zawedde, A., H.N. Tyssøy, J. Stadsnes and M. Sandanger
    The Impact of Energetic Particle Precipitation on Mesospheric OH - Variability of the Sources and the Background Atmosphere
    Journal of Geophysical Research: Space Physics doi:10.1029/2017ja025038, 2018
  30. Zhu, Y., O. Toon, D. Kinnison, V.L. Harvey, M. Mills, C. Bardeen, M. Pitts, N. Bègue, J. Renard, G. Berthet and F. Jégou
    Stratospheric Aerosols, Polar Stratospheric Clouds, and Polar Ozone Depletion After the Mount Calbuco Eruption in 2015
    Journal of Geophysical Research: Atmospheres doi:10.1029/2018jd028974, 2018
  31. Funke, B., W. Ball, S. Bender, A. Gardini, V.L. Harvey, A. Lambert, M. López-Puertas, D. Marsh, K. Meraner, H. Nieder, S. Päivärinta, K. Pérot, C. Randall, T. Reddmann, E. Rozanov, H. Schmidt, A. Seppälä, M. Sinnhuber, T. Sukhodolov, G. Stiller, N. Tsvetkova, P. Verronen, S. Versick, T. von Clarmann, K. Walker and V. Yushkov
    HEPPA-II model-measurement intercomparison project:
    Atmos. Chem. Phys. doi:10.5194/acp-17-3573-2017, 2017
  32. Hocke, K.
    Response of the middle atmosphere to the geomagnetic storm of November 2004
    J. Atmos. Solar-Terr. Phys. doi:10.1016/j.jastp.2016.12.013, 2017
  33. Hwang, J., Y. Choi, W. Kim, H. Su and J.H. Jiang
    Observational estimation of radiative feedback to surface air temperature over Northern High Latitudes
    Climate Dynamics 10.1007/s00382-017-3629-6, 2017
  34. Khaykin, S., S. Godin-Beekmann, P. Keckhut, A. Hauchecorne, J. Jumelet, J. Vernier, A. Bourassa, D. Degenstein, L. Rieger, C. Bingen, F. Vanhellemont, C. Robert, M. DeLand and P. Bhartia
    Variability and evolution of the midlatitude stratospheric aerosol budget from 22 years of ground-based lidar and satellite observations
    Atmos. Chem. Phys. doi:10.5194/acp-17-1829-2017, 2017
  35. Kim, G., J. Kim, Y. Kim and Y. Lee
    Long-term trend of mesospheric temperatures over Kiruna 68°N, 21°E during 2003–2014
    J. Atmos. Solar-Terr. Phys. doi:10.1016/j.jastp.2017.06.018, 2017
  36. Lee, C., G. Jee, Q. Wu, J. Shim, D. Murphy, I. Song, H. Kwon, J. Kim and Y. Kim
    Polar Thermospheric Winds and Temperature Observed by Fabry-Perot Interferometer at Jang Bogo Station, Antarctica
    Journal of Geophysical Research: Space Physics doi:10.1002/2017ja024408, 2017
  37. Orsolini, Y., V. Limpasuvan, K. Pérot, P. Espy, R. Hibbins, S. Lossow, K.R. Larsson and D. Murtagh
    Modelling the descent of nitric oxide during the elevated stratopause event of January 2013
    J. Atmos. Solar-Terr. Phys. doi:10.1016/j.jastp.2017.01.006, 2017
  38. Stone, K., S. Solomon, D. Kinnison, M. Pitts, L. Poole, M. Mills, A. Schmidt, R. Neely, D. Ivy, M. Schwartz, J. Vernier, B. Johnson, M. Tully, A. Klekociuk, G. König-Langlo and S. Hagiya
    Observing the impact of Calbuco volcanic aerosols on South Polar ozone depletion in 2015
    Journal of Geophysical Research: Atmospheres doi:10.1002/2017jd026987, 2017
  39. Thiéblemont, R., M. Marchand, S. Bekki, S. Bossay, F. Lefèvre, M. Meftah and A. Hauchecorne
    Sensitivity of the tropical stratospheric ozone response to the solar rotational cycle in observations and chemistry–climate model simulations
    Atmos. Chem. Phys. doi:10.5194/acp-17-9897-2017, 2017
  40. Yee, J.H., J. Gjerloev, D. Wu and M.J. Schwartz
    First Application of the Zeeman Technique to Remotely Measure Auroral Electrojet Intensity from Space
    Geophys. Res. Lett. doi:10.1002/2017gl074909, 2017
  41. Andersson, M.E., P.T. Verronen, D.R. Marsh, S.M. Paivarinta and J.M.C. Plane
    WACCM-D-Improved modeling of nitric acid and active chlorine during energetic particle precipitation
    Journal of Geophysical Research: Atmospheres doi:10.1002/2015jd024173, 2016
  42. Damiani, A., B. Funke, M.L. Puertas, M.L. Santee, R.R. Cordero and S. Watanabe
    Energetic particle precipitation: A major driver of the ozone budget in the Antarctic upper stratosphere
    Geophys. Res. Lett. doi:10.1002/2016gl068279, 2016
  43. Dhomse, S.S., M.P. Chipperfield, R.P. Damadeo, J.M. Zawodny, W.T. Ball, W. Feng, R. Hossaini, G.W. Mann and J.D. Haigh
    On the ambiguous nature of the 11 year solar cycle signal in upper stratospheric ozone
    Geophys. Res. Lett. doi:10.1002/2016gl069958, 2016
  44. Duderstadt, K.A., J.E. Dibb, C.H. Jackman, C.E. Randall, N.A. Schwadron, S.C. Solomon and H.E. Spence
    Comment on “Atmospheric ionization by high-fluence, hard spectrum solar proton events and their probable appearance in the ice core archive” by A. L. Melott et al.
    Journal of Geophysical Research: Atmospheres doi:10.1002/2016jd025220, 2016
  45. Jones, A., J. Haywood, Jones, A. and V. Aquila
    Sensitivity of volcanic aerosol dispersion to meteorological conditions: A Pinatubo case study
    Journal of Geophysical Research: Atmospheres doi:10.1002/2016jd025001, 2016
  46. Paivarinta, S.M., P.T. Verronen, B. Funke, A. Gardini, A. Seppala and M.E. Andersson
    Transport versus energetic particle precipitation: Northern polar stratospheric NOx and ozone in January-March 2012
    Journal of Geophysical Research: Atmospheres doi:10.1002/2015jd024217, 2016
  47. Randel, W., A. Smith, F. Wu, C. Zou and H. Qian
    Stratospheric Temperature Trends over 1979–2015 Derived from Combined SSU, MLS, and SABER Satellite Observations
    J. Climate doi:10.1175/jcli-d-15-0629.1, 2016
  48. Sioris, C., J. Zou, C.T. McElroy, C. Boone, P. Sheese and P. Bernath
    Water vapour variability in the high-latitude upper troposphere – Part 2: Impact of volcanic eruptions
    Atmos. Chem. Phys. doi:10.5194/acp-16-2207-2016, 2016
  49. Sridharan, S. and M. Sandhya
    Long-term 2004–2015 tendencies and variabilities of tropical UTLS water vapor mixing ratio and temperature observed by AURA/MLS using multivariate regression analysis
    J. Atmos. Solar-Terr. Phys. doi:10.1016/j.jastp.2016.08.001, 2016
  50. Verkhoglyadova, O.P., J.M. Wissing, S. Wang, M.B. Kallenrode and G.P. Zank
    Nighttime mesospheric hydroxyl enhancements during SEP events and accompanying geomagnetic storms: Ionization rate modeling and Aura satellite observations
    Journal of Geophysical Research: Space Physics doi:10.1002/2015ja022217, 2016