Skip navigation
The MLS GPH Product

Contact: Michael Schwartz

Basic Information

MLS measures geopotential height (GPH) on fixed pressure surfaces. GPH is geopotential, the potential energy that a unit mass has when it is lifted to a given position in the Earth's gravitational field, divided by the mean surface gravitational acceleration to give units of height. GPH is a vertical scale like altitude, but the length of the "meter stick" varies with the magnitude of the local gravitational acceleration, g, and so is a function of latitude and height. It is straightforward to convert from GPH to altitude, but GPH is commonly used in meteorological calculations because its use simplifies certain equations. Where the density contribution of water vapor to air can be neglected, the GPH difference between two pressure surfaces is proportional to the temperature of the slab between them, so a temperature profile and GPH on a reference pressure surface are sufficient to determine a GPH profile. GPH contours on pressure surfaces are stream functions for geostrophic wind.
Map of GPH
Sample GPH map
Map from 2005d264

How it is part of MLS Science Objectives

Changes in general circulation of the atmosphere associated with climate change will be reflected in GPH gradients. Determination of the height of MLS pressure surfaces is also an important intermediate step in understanding all of the other retrieved fields.

How EOS MLS measures GPH

Temperature and geopotential height profiles are simultaneously retrieved using MLS radiances near O2 spectral lines and knowledge of how the instrument was pointed. GPH differences between pressure surfaces can be determined from the temperature profile, so, given a temperature profile, the only additional information in the GPH profile is the height of a single reference level. MLS radiances provide no absolute pointing information, so this reference height for each GPH profile comes from knowledge of the instrument mechanism positions and the spacecraft position and orientation. The standard version 4.2 GPH product is taken from the CorePlusR3 retrieval phase.

Quick Product Information for data version v4.2

  • Swath Name: GPH
  • Status Flag: Only use profiles for which the Status field is an even number.
  • Useful Range: 261-0.001 hPa
  • DAAC Short Name: ML2GPH
  • Precision: Only use values for which the estimated precision is a positive number.
  • Quality Threshold: >0.2 for the 83 hPa level and smaller pressures; >0.9 at larger pressures of 100 hPa and larger.
  • Convergence Threshold: <1.03
Download EOS Aura MLS GPH v4.2 data

Publications related to the MLS GPH data product

Future Publications

  1. Rüfenacht, R., G. Baumgarten, J. Hildebrand, F. Schranz, V. Matthias, G. Stober, F. Lübken, N. Kämpfer, "Validation of middle-atmospheric wind in observations and models", Atmospheric Measurement Techniques Discussions, 1-31, doi:10.5194/amt-2017-390, Not yet published.


  1. Fritts, D., H. Iimura, D. Janches, R. Lieberman, D. Riggin, N. Mitchell, R. Vincent, I. Reid, D. Murphy, M. Tsutsumi, A. Kavanagh, P. Batista, W. Hocking, "Structure, Variability, and Mean‐Flow Interactions of the January 2015 Quasi‐Two‐Day Wave at Middle and High Southern Latitudes", Journal of Geophysical Research: Atmospheres, doi:10.1029/2018jd029728, 2019. reprint
  2. Harvey, V.L., C. Randall, E. Becker, A. Smith, C. Bardeen, J. France, L. Goncharenko, "Evaluation of the mesospheric polar vortices in WACCM", Journal of Geophysical Research: Atmospheres, doi:10.1029/2019jd030727, 2019.
  3. Harvey, V.L., C. Randall, L. Goncharenko, E. Becker, J. France, "On the Upward Extension of the Polar Vortices Into the Mesosphere", Journal of Geophysical Research: Atmospheres 123, 17, 9171-9191, 10.1029/2018jd028815, 2019.
  4. Korotyshkin, D., E. Merzlyakov, C. Jacobi, F. Lilienthal, Q. Wu, "Longitudinal MLT wind structure at higher mid-latitudes as seen by meteor radars at central and Eastern Europe 13°E/49°E", Advances in Space Research, doi:10.1016/j.asr.2019.01.036, 2019.
  5. Yamazaki, Y., V. Matthias, "Large‐Amplitude Quasi‐10‐Day Waves in the Middle Atmosphere During Final Warmings", Journal of Geophysical Research: Atmospheres, doi:10.1029/2019jd030634, 2019. reprint
  6. Yi, W., X. Xue, I. Reid, D. Murphy, C. Hall, M. Tsutsumi, B. Ning, G. Li, R. Vincent, J. Chen, J. Wu, T. Chen, X. Dou, "Climatology of the mesopause relative density using a global distribution of meteor radars", Atmospheric Chemistry and Physics 19, 11, 7567-7581, doi:10.5194/acp-19-7567-2019, 2019. reprint


  1. France, J.A., C.E. Randall, R.S. Lieberman, V.L. Harvey, S.D. Eckermann, D.E. Siskind, J.D. Lumpe, S.M. Bailey, J.N. Carstens, J.M. Russell, "Local and Remote Planetary Wave Effects on Polar Mesospheric Clouds in the Northern Hemisphere in 2014", Journal of Geophysical Research: Atmospheres 123, doi:10.1029/2017jd028224, 2018. reprint
  2. Kablick, G., M. Fromm, S. Miller, P. Partain, D. Peterson, S. Lee, Y. Zhang, A. Lambert, Z. Li, "The Great Slave Lake PyroCb of 5 August 2014: Observations, Simulations, Comparisons With Regular Convection, and Impact on UTLS Water Vapor", Journal of Geophysical Research: Atmospheres 123, 21, 12,332-12,352, doi:10.1029/2018jd028965, 2018. reprint
  3. Matthias, V., M. Ern, "On the origin of the mesospheric quasi-stationary planetary waves in the unusual Arctic winter 2015/2016", Atmospheric Chemistry and Physics 18, 7, 4803-4815, 10.5194/acp-18-4803-2018, 2018. reprint
  4. Pancheva, D., P. Mukhtarov, D. Siskind, "The quasi-6-day waves in NOGAPS-ALPHA forecast model and their climatology in MLS/Aura measurements 2005–2014", Journal of Atmospheric and Solar-Terrestrial Physics 181, 19-37, doi:10.1016/j.jastp.2018.10.008, 2018. reprint
  5. Sato, K., R. Yasui, Y. Miyoshi, "The Momentum Budget in the Stratosphere, Mesosphere, and Lower Thermosphere. Part I: Contributions of Different Wave Types and In Situ Generation of Rossby Waves", Journal of the Atmospheric Sciences 75, 10, 3613-3633, doi:10.1175/jas-d-17-0336.1, 2018. reprint
  6. Yamazaki, Y., C. Stolle, J. Matzka, P. Alken, "Quasi-6-Day Wave Modulation of the Equatorial Electrojet", Journal of Geophysical Research: Space Physics 123, 5, 4094-4109, doi:10.1029/2018ja025365, 2018. reprint
  7. Yamazaki, Y., "Quasi‐6‐Day Wave Effects on the Equatorial Ionization Anomaly Over a Solar Cycle", Journal of Geophysical Research: Space Physics 123, 11, 9881-9892, doi:10.1029/2018ja026014, 2018. reprint
  8. Yi, W., I. Reid, X. Xue, D. Murphy, C. Hall, M. Tsutsumi, B. Ning, G. Li, J. Younger, T. Chen, X. Dou, "High- and Middle-Latitude Neutral Mesospheric Density Response to Geomagnetic Storms", Geophysical Research Letters 45, 1, 436-444, doi:10.1002/2017gl076282, 2018. reprint
  9. Zawedde, A., H.N. Tyssøy, J. Stadsnes, M. Sandanger, "The Impact of Energetic Particle Precipitation on Mesospheric OH - Variability of the Sources and the Background Atmosphere", Journal of Geophysical Research: Space Physics 123, 7, 5764-5789, doi:10.1029/2017ja025038, 2018. reprint


  1. Gisinger, S., A. Dörnbrack, V. Matthias, J. Doyle, S. Eckermann, B. Ehard, L. Hoffmann, B. Kaifler, C. Kruse, M. Rapp, "Atmospheric Conditions during the Deep Propagating Gravity Wave Experiment DEEPWAVE", Monthly Weather Review 145, 10, 4249-4275, doi:10.1175/mwr-d-16-0435.1, 2017. reprint
  2. Smith, A., R. Garcia, A. Moss, N. Mitchell, "The Semiannual Oscillation of the Tropical Zonal Wind in the Middle Atmosphere Derived from Satellite Geopotential Height Retrievals", Journal of the Atmospheric Sciences 74, 8, 2413-2425, doi:10.1175/jas-d-17-0067.1, 2017. reprint
  3. Stober, G., V. Matthias, C. Jacobi, S. Wilhelm, J. Höffner, J. Chau, "Exceptionally strong summer-like zonal wind reversal in the upper mesosphere during winter 2015/16", Annales Geophysicae 35, 3, 711-720, doi:10.5194/angeo-35-711-2017, 2017. reprint


  1. Ern, M., Q. Trinh, M. Kaufmann, I. Krisch, P. Preusse, J. Ungermann, Y. Zhu, J. Gille, M. Mlynczak, J. Russell, M. Schwartz, M. Riese, "Satellite observations of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient during recent stratospheric warmings", Atmospheric Chemistry and Physics 16, 15, 9983-10019, doi:10.5194/acp-16-9983-2016, 2016. reprint
  2. Matthias, V., A. Dörnbrack, G. Stober, "The extraordinarily strong and cold polar vortex in the early northern winter 2015/2016", Geophysical Research Letters 43, 23, 12,287-12,294, doi:10.1002/2016gl071676, 2016. reprint


  1. Lukianova, R., A. Kozlovsky, S. Shalimov, T. Ulich, M. Lester, "Thermal and dynamical perturbations in the winter polar mesosphere-lower thermosphere region associated with sudden stratospheric warmings under conditions of low solar activity", Journal of Geophysical Research: Space Physics 120, 6, 5226-5240, doi:10.1002/2015ja021269, 2015. reprint
  2. Manney, G., Z. Lawrence, M. Santee, W. Read, N. Livesey, A. Lambert, L. Froidevaux, H. Pumphrey, M. Schwartz, "A minor sudden stratospheric warming with a major impact: Transport and polar processing in the 2014/2015 Arctic winter", Geophysical Research Letters 42, 18, 7808-7816, doi:10.1002/2015gl065864, 2015. reprint
  3. Merzlyakov, E.G., C. Jacobi, T.V. Solovjova, "The year-to-year variability of the autumn transition dates in the mesosphere/lower thermosphere wind regime and its coupling with the dynamics of the stratosphere and troposphere", Journal of Atmospheric and Solar-Terrestrial Physics 122, 9-17, doi:10.1016/j.jastp.2014.11.002, 2015. reprint
  4. Younger, J.P., I.M. Reid, R.A. Vincent, D.J. Murphy, "A method for estimating the height of a mesospheric density level using meteor radar", Geophysical Research Letters 42, 14, 6106-6111, doi:10.1002/2015gl065066, 2015. reprint


  1. Younger, J.P., C.S. Lee, I.M. Reid, R.A. Vincent, Y.H. Kim, D.J. Murphy, "The effects of deionization processes on meteor radar diffusion coefficients below 90 km", Journal of Geophysical Research: Atmospheres 119, 16, 10027-10043, doi:10.1002/2014JD021787, 2014. reprint


  1. Lee, J.N., D.L. Wu, G.L. Manney, M.J. Schwartz, A. Lambert, N.J. Livesey, K.R. Minschwaner, H.C. Pumphrey, W.G. Read, "Aura Microwave Limb Sounder Observations of the Polar Middle Atmosphere: Dynamics and Transport of CO and H2O", Journal of Geophysical Research 116, D5, D05110, doi:10.1029/2010JD014608, 2011. reprint
  2. Limpasuven, V., M.J. Alexander, Y.J. Orsolini, D.L. Wu, M. Xue, J.H. Richter, C. Yamashita, "Mesoscale simulations of gravity waves during the 2008-2009 major stratospheric sudden warming", Journal of Geophysical Research 116, D17104, doi:10.1029/2010JD015190, 2011. reprint
  3. McDonald, A.J., R.E. Hibbins, M.J. Jarvis, "Properties of the quasi 16 day wave derived form EOS MLS observations", Journal of Geophysical Research 116, D06112, doi:10.1029/2010JD014719, 2011. reprint
  4. Wu, L., H. Su, J.H. Jiang, "Regional simulations of deep convection and biomass burning over South America: 1. Model evaluations using multiple satellite data sets", Journal of Geophysical Research 116, D17208, doi:10.1029/2011JD016105, 2011. reprint


  1. Lee, J.N., D.L. Wu, G.L. Manney, M.J. Schwartz, "Aura Microwave Limb Sounder observations of the Northern Annular Mode: From the mesosphere to the upper troposphere", Geophysical Research Letters 36, L20807, doi:10.1029/2009GL040678, 2009. reprint
  2. Manney, G.L., M.J. Schwartz, K. Krueger, M.L. Santee, S. Pawson, J.N. Lee, W.H. Daffer, R.A. Fuller, N.J. Livesey, "Aura Microwave Limb Sounder Observations of Dynamics and Transport During the Record-breaking 2009 Arctic Stratospheric Major Warming", Geophysical Research Letters 36, doi:10.1029/2009GL038586, 2009. reprint


  1. Manney, G.L., K. Kruger, S. Pawson, K. Minschwaner, M.J. Schwartz, W.H. Daffer, N.J. Livesey, M.G. Mlynczak, E.E. Remsberg, J.M. Russell, J.W. Waters, "The evolution of the stratopause during the 2006 major warming: Satellite Data and Assimilated Meteorological Analyses", Journal of Geophysical Research 113, D11115, doi:10.1029/2007JD00909, 2008. reprint
  2. Sandford, D.J., M.J. Schwartz, N.J. Mitchell, "The Wintertime two-day wave the the Polar Stratosphere, Mesosphere and lower Thermosphere", Atmospheric Chemistry and Physics 8, 749-755, doi:10.5194/acp-8-749-2008, 2008. reprint
  3. Schwartz, M.J., D.E. Waliser, B. Tian, D.L. Wu, J.H. Jiang, W.G. Read, "Characterization of MJO-Related Upper-Tropospheric Hydrological Processes Using MLS", Geophysical Research Letters 35, L08812, doi:10.1029/2008GL033675, 2008. reprint
  4. Schwartz, M.J., A. Lambert, G.L. Manney, W.G. Read, N.J. Livesey, L. Froidevaux, C.O. Ao, P.F. Bernath, C.D. Boone, R.E. Cofield, W.H. Daffer, B.J. Drouin, E.J. Fetzer, R.A. Fuller, R.F. Jarnot, J.H. Jiang, Y.B. Jiang, B.W. Knosp, K. Kruger, J.L.F. Li, M.G. Mlynczak, S. Pawson, J.M. Russell, M.L. Santee, W.V. Snyder, P.C. Stek, R.P. Thurstans, A.M. Tompkins, P.A. Wagner, K.A. Walker, J.W. Waters, D.L. Wu, "Validation of the Aura Microwave Limb Sounder Temperature and Geopotential Height Measurements", Journal of Geophysical Research 113, D15S11, doi:10.1029/2007JD008783, 2008. reprint


  1. Cofield, R.E., P.C. Stek, "Design and field-of-view calibration of 114-660 GHz optics of the Earth Observing System Microwave Limb Sounder", IEEE Transactions on Geoscience and Remote Sensing 44, no. 5, 1166-1181, doi:10.1109/TGRS.2006.873234, 2006. reprint

Site Manager: Nathaniel Livesey
Webmaster: Brian Knosp
JPL Clearance: CL# 97-0564