Summary

Useful vertical range: 10 - 0.0032 hPa (daytime)
1 - 0.0032 hPa (nighttime)
day-minus-night differences required between 10 and 1 hPa

Latitude coverage: 80°S to 80°N

Vertical resolution: varying from ∼5 km to 15 km

Significant averaging (monthly means) is required to obtain scientifically useful data.

Contact: Luis Millán, luis.f.millan@jpl.nasa.gov

Introduction

A description of the retrieval methodology is given by:

In short, the retrieval algorithm produces a pair of zonal mean abundance fields for each day, one for the daytime part of the orbit and the other for the nighttime part on a 6 surface per decade grid change in pressure (∼3km). These are obtained from a 10° latitude bin zonal mean radiance (sorted by SZA) interpolated onto 6 surface per decade pressure grid using the limb tangent pressure from the standard production data.

To minimize biases, day-minus-night differences between 10 and 1 hPa must be used as a more accurate measure of daytime HO$_2$.

Due to the small spectral signature of HO$_2$ in the MLS radiances, significant averaging (such as monthly zonal means) is required to obtain scientifically useful results.

Precision, Accuracy, and Vertical Resolution

In the usable pressure range, the vertical resolution varies from about about 4 km at 10 hPa to around 14 km at 0.0032 hPa. Daily precision for a 10° latitude bin ranges from 0.1 ppbv in the upper stratosphere to up to 8 ppbv in the upper mesosphere, dropping to ∼1.4 ppbv and ∼0.5 ppbv for monthly and yearly averages, respectively. Between 10 and 0.1 hPa, for both daytime and nighttime cases, the total systematic error is around 0.04 ppbv (up to ∼10 × 106 molec cm$^{-3}$), while for smaller pressure levels the systematic error is as big as 1.2 ppbv (∼0.2 × 106 molec cm$^{-3}$).
Data Format

All the MLS \text{HO}_2 data described here can be found at the NASA Goddard Space Flight Center Earth Sciences (GES) Data and Information Services Center DISC website.

All the data files described here will be stored in netCDF files.

The data will be stored in files named according to the convention

\text{MLS-Aura}_L3ZMRAR-\text{HO}_2-v04-VV>-c<CC>_d<yy>_<dd>.nc4

where \text{L3ZMRAR} stands for Level 3 Zonal Means Radiance Average Retrievals, \text{v04-VV>-c<CC>} is the version and cycle number. The files are produced on a one-day granularity and named according to the observation date where \text{<yyyy>} is the four digit calendar year and \text{<ddd>} is the day number in that year (001 = 1 January).

Each file will contained two swaths: Daytime and Nighttime. Each swath contains the following fields:

- Average retrieved \text{HO}_2 data [vmr]
- Average ND retrieved \text{HO}_2 data [10^6 \text{ molecules cm}^{-3}]
- Error precision [vmr]
- Error ND precision [10^6 \text{ molecules cm}^{-3}]
- lat latitude [-80°, -70°, -60°, ... , 80°]
- lev pressure levels [hPa]
- Solar_Zenith_Angle solar zenith angle [deg]
- Local_Solar_Time local solar time [hours]

Data Screening

Bad data were set to -999.99 and should be avoided.

Due to the small signal to noise ratio many negative values are found through this data set. These values need to be included in any scientific study to avoid high biases in averages derived from these data.