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ABSTRACT

The spatial variations in the probability density functions (PDFs) of relative humidity (RH) in the tropical

and subtropical troposphere are examined using observations from the Atmospheric Infrared Sounder

(AIRS) and the Microwave Limb Sounder (MLS) instruments together with a simple statistical model. The

model, a generalization of that proposed by Sherwood et al., assumes the RH is determined by a combination

of drying by uniform subsidence and random moistening events and has two parameters: r, the ratio of the

drying time by subsidence to the time between moistening events, and k, a measure of the variability of the

moistening events. The observations show that the characteristics of the PDFs vary between the tropics and

subtropics, within the tropics or subtropics, and with altitude. The model fits the observed PDFs well, and the

model parameters concisely characterize variations in the PDFs and provide information on the processes

controlling the RH distributions. In tropical convective regions, the model PDFs that match the observations

have large r and small k, indicating rapid random remoistening, which is consistent with direct remoistening

in convection. In contrast, in the nonconvective regions there are small r and large k, indicating slower, less

random remoistening, consistent with remoistening by slower, quasi-horizontal transport. The statistical

model derived will be useful for quantifying differences between, or temporal changes in, RH distributions

from different datasets or models, and for examining how changes in physical processes could alter the RH

distribution.

1. Introduction

Water vapor plays a crucial role in the earth’s climate

system, and the potential for water vapor feedbacks is a

major challenge for understanding and predicting cli-

mate change. It is therefore important to know the

distribution of atmospheric water vapor and the pro-

cesses controlling this distribution. As the radiative effect

of water vapor is roughly logarithmic in the concentra-

tion (e.g., Spencer and Braswell 1997; Held and Soden

2000; Pierrehumbert et al. 2006), it is important to know

the full distribution of atmospheric water vapor and not

just the mean and variance.

In recent years there have been several studies that

have aimed at addressing these issues by examining the

probability density functions (PDFs) of observed tropo-

spheric humidity (Soden and Bretherton 1993; Gierens

et al. 1999; Spichtinger et al. 2002; Zhang et al. 2003;

Sherwood et al. 2006, hereafter S06; Luo et al. 2007;

Ekström et al. 2007; Read et al. 2007). These stud-

ies all showed that the water vapor PDFs are very

broad and non-Gaussian, but the characteristics of the

PDFs have varied between studies. For example, Soden

and Bretherton (1993) noted a lognormal distribution

for 200–500-hPa upper-tropospheric humidity, whereas

Zhang et al. (2003) and Luo et al. (2007) have reported

bimodal PDFs. It is unclear whether the differences

in reported PDFs are caused by differences in the
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instruments making the measurements (including re-

mote versus in situ measurements), differences in the

space–time resolution of the data used, or whether the

differences are due to the different regions and time

periods considered in the studies.

We investigate some of these issues by examining

PDFs for different subregions of the tropics and sub-

tropics (and the whole tropics) using daily measure-

ments from three satellite instruments: the Atmospheric

Infrared Sounder (AIRS) instrument on the Aqua sat-

ellite (Aumann et al. 2003) and the Microwave Limb

Sounder (MLS) instruments on the Upper Atmospheric

Research Satellite (UARS) (Read et al. 2001) and Aura

satellite (Read et al. 2007). We examine how the PDFs

vary between regions and between measurements.

We also examine whether the observed PDFs can be

reproduced by simple theoretical models. One is the

model recently derived by S06. In this model the rela-

tive humidity (RH) is assumed to be determined by

uniform subsidence and random remoistening process.

These simple assumptions are supported by studies that

show tropical humidity can be reproduced using the

large-scale to advect a water tracer with no micro-

physics other than condensation when RH exceeds

100% (e.g., Sherwood 1996; Salathe and Hartmann

1997; Pierrehumbert 1998; Dessler and Sherwood 2000;

Galewsky et al. 2005). In the S06 model, the PDF of RH

has a simple algebraic form (with exponent related to

the ratio of drying to remoistening time). We also

consider a generalization of this model that includes an

additional parameter, which can be interpreted as a

measure of the variability of the remoistening events. It

will be shown that this generalized model fits the ob-

servations better than the model that S06 proposed and

can capture the spatial variations in the PDFs.

The data and theoretical models used in this study are

described in the next section. In section 3, the spatial

and vertical variations of AIRS PDFs of RH are ex-

amined and compared with the theoretical model.

Measurements from other instruments are considered

in section 4, to check the robustness of the results based

on AIRS measurements. Finally, conclusions and future

work are discussed in section 5.

2. Data and methods

a. Data

The AIRS data examined are level 2 data retrievals

(version 5) that have been binned into a 18 3 18

latitude–longitude grid as in Gettelman et al. (2006).

The level 2 data include temperature and water vapor at

vertical resolution of around 1–2 km and horizontal

resolution of around 50 km. RH is computed from

AIRS water vapor and temperature retrievals as in

Gettelman et al. (2006): RH over water is calculated for

temperatures .273 K, RH over ice is calculated for

temperatures ,253 K, and a linear combination is cal-

culated between these temperatures. The AIRS water

vapor is an average for a layer between two pressure

levels and is archived on 28 levels from the surface to

the mesosphere. Following the AIRS convention, each

layer is referenced by the pressure at the bottom of the

layer; for example, RH at 250 hPa corresponds to the

RH averaged from 250 to 200 hPa. We examine AIRS

RH from 2002 to 2007 on layers with bottoms between

850 and 200 hPa.

The UARS MLS instrument made upper-tropospheric

water measurements from September 1991 to July 1997

(with limited coverage after 1994). Measurements were

made every 4.18 along an orbit track, with 15 orbits per

day, on four pressure surfaces between 147 and 464 hPa

(Read et al. 2001). We examine here version 4.9 RH

measurements on the 215-hPa surface for northern win-

ters [December–February (DJF)] 1991/92 to 1993/94.

These measurements have approximately 3-km vertical

resolution, with accuracy and precision of 22% and 10%,

respectively (Read et al. 2001).

Aura MLS provides water vapor measurements since

July 2004. Water vapor mixing ratios are retrieved from

calibrated Aura MLS observations (Livesey et al. 2006),

and RH with respect to ice is computed from water

vapor and temperature retrievals as for AIRS (Read

et al. 2007). We examine here Aura MLS version 2.2 RH

measurements at 215 hPa for the northern winters

2005/06 and 2006/07.

A detailed comparison of AIRS and Aura MLS water

vapor measurements has recently been reported by

Fetzer et al. (2008). They showed that there was a high

correlation between the measurements from the two

instruments at 250 hPa, although Aura MLS had a

greater dynamical range, with drier values in dry regions

and wetter values in moist regions.

b. Probability density functions

Our primary method of analysis in this paper is ex-

amination of PDFs. We form and examine PDFs of RH

from each of the above datasets. An important issue

when calculating and examining PDFs is the space–time

scales included in the PDFs. The characteristics of the

PDFs can be sensitive to these scales. This is illustrated

in Fig. 1, which shows PDFs of AIRS RH measurements

at 400 hPa, for different spatial regions and temporal

resolution.

Figure 1a compares PDFs for all AIRS data at 400 hPa

within the ‘‘whole tropics’’ (308S–308N, 08–3608E) for
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the 2002/03 to 2006/07 northern winters (December

to February), using either daily data (solid curve) or

monthly-mean data (dashed curve). In both cases the

data are on a 18 longitude by 18 latitude grid. There are

significant differences between the two PDFs, even

though the same measurements where used. The PDF

using daily data is much broader with a large peak at low

RH and a second, much broader, peak at high RH. In

contrast, the PDF of monthly-mean data is much nar-

rower (no very low or very high values) and has a

broader peak at moderate RH. In other words, the av-

eraging process in computing monthly-mean data tends

to remove extreme values and produce a PDF with a

peak close to the long-term average.

The characteristics of the PDFs also depend on the

regions considered. This can be seen by comparing the

three panels in Fig. 1. Figures 1b,c show PDFs using

same data source as Fig. 1a except for two different

108 latitude by 208 longitude subregions. Again there are

significant differences between PDFs using daily and

monthly-mean data. There are also, as noted by Ryoo

et al. (2008), significant variations between regions.

Whereas the PDF for the whole tropics is bimodal, the

PDFs for the subregions are unimodal with peaks at

high (Fig. 1b) or low (Fig. 1c) RH. These differences are

examined in more detail below.

As mentioned in the introduction, the logarithmic

dependence of water vapor absorption to the water

vapor concentration means that it is important to

quantify the full variation in RH. Because of this we

focus on PDFs of daily data rather than monthly-mean

data, which averages out extreme values. Furthermore,

as we would also like to link the characteristics of the

PDFs to the processes controlling the humidity distri-

bution and the key processes varying between regions

(e.g., Ryoo et al. 2008), we examine the PDFs of

108 latitude by 208 longitude subregions as well as PDFs

of the whole tropics.

c. Statistical model

In addition to examining the PDFs from the various

measurements, we also compare these observed PDFs

with a statistical model for distributions of RH. This

model is a generalization of the model derived in S06.

As in the S06 model, the generalized model is based on

the ‘‘time of last saturation’’ paradigm for tropospheric

humidity, in which a parcel’s humidity is equal to the

lowest saturation value it has experienced since it has

left the boundary layer.

In deriving their model, S06 assumed there is uniform

subsidence, and the relative humidity R can then be

approximated as

R 5 exp � t

tdry

� �
, (1)

where t is the time since the parcel was last saturated

and tdry is the uniform drying time by subsidence. S06

further assumed that ‘‘remoistening’’ of parcels occurs

by random moistening events, which are independent of

the parcel history (i.e., a Poisson process). The PDF of

the time t of last saturation is then

P(t) 5 exp(�t/tmoist)/tmoist, (2)

where tmoist is the mean time of last saturation. The

standard deviation of t is also tmoist, which implies that

the coefficient of variation (CV) of the time of last

saturation is 1. Combining Eqs. (1) and (2) yields the

PDF of the relative humidity R:

P(R) 5 rRr�1, (3)

FIG. 1. PDFs of AIRS 400-hPa RH data for (a) the whole tropics (308S–308N, 08–3608E), (b) a tropical convective subregion

(58S–58N, 1208–1408E), and (c) a tropical nonconvective subregion (58S–58N, 808–1008W). Solid curves show PDFs using daily data,

while dashed curves show PDFs from monthly-mean data. All PDFs are formed using data at resolution 18 longitude by 18 latitude.
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where r 5 tdry/tmoist is the ratio of drying to moistening

time. This distribution is a special case of the beta dis-

tribution

PBeta(R) 5
Ra�1(1� R)b�1

B(a, b)
, (4)

where B(a, b) is the beta function (Wilks 1995). The

PDF in (3) is the beta distribution with b 5 1 and a 5 r.

The corresponding cumulative distribution is C(R) 5 Rr.

In this paper we consider a two-parameter generali-

zation of the PDF (3). A purely statistical approach

would naturally lead to the two-parameter form of the

beta PDF where we do not restrict b to be equal to 1 as

in (3). This approach, however, cannot be explained in

terms of the physics of the underlying phenomena. A

more physically based approach that keeps the concepts

of uniform subsidence and random remoistening events

is to retain Eq. (1) to model the RH in terms of the time

t of last saturation and to generalize the PDF in (2) for

this time t. The natural generalization in this context is

to use the gamma PDF, given by

P(t) 5
exp(�kt/tmoist)tk�1kk

tk
moist

G(k)
, (5)

where G(k) is a gamma function, rather than the expo-

nential PDF in (2). This PDF is still a member of the

family of PDFs associated with Poisson processes with

the same mean time of last saturation, tmoist, but in-

cludes an additional parameter k, which is a measure of

the variability of this time. The standard deviation of

the time t of last saturation is tmoist/
ffiffiffi
k
p

, so the CV of t is

1/
ffiffiffi
k
p

. For k 5 1, the CV is 1 and the PDF reduces to the

exponential form (2), while larger k corresponds to less

variable events. For the data considered herein, we find

that k is less than 10, which corresponds to moderate to

large relative variability in the time of last saturation.

The PDF of the relative humidity R is now given by

P(R) 5
kkrkRkr�1

G(k)
(�log R)k�1, (6)

and the cumulative distribution function (CDF) is

C(R) 5 1� g � log R

tdry

� �
, (7)

where g is the incomplete gamma function. Both

equations reduce to the original S06 distributions in the

limit k 5 1. In the following we refer to distributions of

RH given by (3) as the S06 model and distributions

given by (6) as the ‘‘generalized’’ model. Below we

compare PDFs of the form (6) with the PDFs of the

observations discussed in the previous section. How-

ever, before this we examine the characteristics of PDFs

given by (6).

Figure 2 illustrates the relationship between the rel-

ative subsidence model, the gamma PDF, and the PDF

of the RH of the generalized model. In the top plots, the

inverse of the relative subsidence model (1) is shown,

where the normalized time of last saturation t/tdry is

plotted with respect to the relative humidity R. To

represent the range of variability that is implicit in the

gamma PDF, we indicate with horizontal lines the mean

and the mean plus or minus one standard deviation of

the time of last saturation. On the left, these three

values are shown for r 5 2 and k 5 3, which, as shown

later in the paper, roughly corresponds to a convective

region of the tropics, while on the right the three values

are shown for r 5 0.6 and k 5 10, which corresponds to a

nonconvective region. The bottom pair of plots shows

the PDFs of the RH (6) associated with the values for

r and k in the top plots. The purpose of this figure is to

illustrate the relationships between the mean and stan-

dard deviation of the time of last saturation and the

PDF of the RH. It can be seen that short mean times

correspond to high RH, while long mean times corre-

spond to low RH, which is physically explained by the

drying process during subsidence. The figure also shows

that the standard deviation of the time of last saturation

causes larger variability in the RH at long mean times as

compared with short mean times. This is because the

RH curves shown in the top plots have a more highly

negative slope at long mean times.

The P(R) for several values of r and k are illustrated

in Fig. 3. This shows that a wide range of PDFs can be

formed by varying the two parameters. For example, the

location of the peak RH varies with r: the peak occurs at

RH 5 0 for r , 1 regardless of the value of k, whereas

the peak is at high RH for r . 1. It can be shown that the

peak of the PDF occurs at

Rpeak 5 exp � k� 1

kr � 1

� �
(8)

for k . 1. This shows that as r increases (for fixed k) the

peak occurs at larger values, with P / 0 as r / 0 and

P / 1 as r / ‘. This differs from the S06 model where

the peaks only occur at RH 5 0 (for r , 1) or 1 (for

r . 1). Figure 3 also shows that the widths of the PDFs

vary with k, with narrower distribution for larger k and

smaller r.

It is more common to examine the mean and standard

deviation of the RH distribution than the full PDFs, so it

is of interest to consider the mean and standard devia-

tion of the above distributions. For distributions given

by (6) the mean is
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mR 5
r

r 1 1/k

� �k

, (9)

and standard deviation is

sR 5 kk/2rk/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kr 1 1)2k � (kr 1 2)kkkrk

q

(kr 1 2)k/2(kr 1 1)k
. (10)

The variation of mR and sR with r and k is shown in

Fig. 4. Both mR and sR depend on r and k, but mR de-

pends primarily on r and is only weakly dependent on k

(Fig. 4a), and sR is primarily dependent on k and only

weakly dependent on r (Fig. 4d). As a result, r can be

estimated from mR using (9) with, say, k 5 2, and k can

be estimated from sR using (10) with, say, r 5 2.

We note that while the generalization in the proposed

model can be described mathematically by the gamma

PDF (5) with the additional parameter k, there is also an

important physical difference from S06. In S06, the air

parcels in the tropics are assumed to be remoistened

FIG. 2. Relationship between time to last saturation t and RH for (a) r 5 2, k 5 3 and (b) r 5 0.6,

k 5 10. Horizontal dashed lines show mean time to last saturation, and horizontal dotted lines show

mean plus and minus standard deviation. (c),(d) Corresponding PDFs of RH.
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according to a Poisson process, which, along with the

subsidence model for the RH (1), implies that a single

PDF would be used to approximate the RH in the entire

tropical region at a given pressure level. In the gener-

alized model, we focus only on the remoistening time at

last saturation to allow for any dependence of the mean

and standard deviation of this last saturation time on

location in the tropics. For instance, in the subtropics,

we expect that the last saturation would occur closer to

the tropics and that some time would elapse as the air

parcels subside into the subtropical region. This would

correspond to the right plots of Fig. 2, where the mean

value of the time of last saturation is relatively large and

the corresponding PDF of the RH has a peak at low

RH. The point here is that the remoistening events are

location dependent and can no longer be considered as

a Poisson process. However, it is not necessary to model

the entire process of remoistening; only the time of last

saturation is relevant to the RH and we are using the

gamma PDF (5) for this event. In the next sections we

show how we can model location dependence in the

remoistening process using the generalization of S06.

3. AIRS PDFs

We now examine the PDFs from AIRS RH mea-

surements and compare with the above theoretical dis-

tributions. We first investigate AIRS measurement for

the 250 hPa layer during Northern Hemisphere winter

(DJF), and then consider other seasons and altitudes.

a. 250 hPa, DJF

The symbols in Fig. 5 show the PDF (Fig. 5a), and

corresponding CDF (Fig. 5b), of AIRS RH for all

northern winter data (2002–07) within the tropics and

subtropics (308S–308N, 0–3608E). The observed PDF is

broad and asymmetric with a peak around 20% and

long tail of moist air. Such broad distributions of upper-

tropospheric RH have also been observed in data from

other satellite instruments, for example, MLS, global

positioning system (GPS) (S06), and Odin (Ekström

et al. 2007).

Also shown in Fig. 5 are fits to the AIRS data for the

S06 and generalized models. The values of r and, in the

case of the generalized model, k, are found by mini-

mizing the mean square error between model and

observed PDFs. We choose this method over other stan-

dard statistical techniques, such as the maximum like-

lihood method, because it is not overly sensitive to the

low-probability regions of the PDF. These comparisons

show that the generalized model is a better fit to the

observed PDF and CDF than the original S06 model. In

particular, the generalized model can reproduce the

peak of the PDF at RH close to 20%, whereas the peak

of the S06 model occurs at RH 5 0% (as noted in the

discussion of Fig. 1, the peaks of the PDFs from the S06

model can only appear at RH equal to 0% or 100%).

FIG. 3. PDFs of RH for various r and k generated by generalized

models: (a) r 5 0.5, (b) r 5 1, and (c) r 5 2 for k 5 1, 2, 4, and 10,

respectively.
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This comparison indicates that inclusion of an addi-

tional parameter in the statistical model greatly im-

proves the agreement with the AIRS data. Further

evidence of this improved agreement is presented below.

Note that S06 examined CDFs from GPS and the two

MLS instruments but not AIRS data. The agreement

between the S06 model and GPS PDFs is better than that

in Fig. 5b, but the disagreement with MLS PDFs is sim-

ilar to that for AIRS. The differences between different

datasets are examined further in section 5.

We now consider the PDFs for smaller subregions

than the whole tropics. As the differences between

distributions are more visible if we are considering the

PDFs rather than the CDFs, in the remainder of

the paper we focus on the PDFs of RH, rather than the

CDFs, as considered by S06, but similar results are ob-

tained if CDFs were used (i.e., the best-fit values of

r and k are very similar for fits to PDFs or CDFs). Figure

5 shows the PDFs of AIRS RH for six 108 latitude by

208 longitude regions in the tropics (58S–58N) and the

subtropics (158–258N). As noted by Ryoo et al. (2008),

the PDFs vary between regions, both with longitude and

between the tropics and subtropics. The location of the

peaks of the PDFs varies from around 20% to around

60%, and the width and skewness of the distributions

also vary. The fits to the AIRS PDFs for the various

subregions for the S06 (k 5 1) and generalized (variable k)

models are also shown in Fig. 6. The generalized model

can fit the data for all subregions. This includes not only

the peak values but also the range and skewness of the

PDFs. Some differences between generalized model

and observed PDFs can be seen for high RH, especially

in the tropical eastern Pacific (58S–58N, 808–1008W).

However, these are relatively small differences.

The S06 model cannot match the variations in the

peak of the observed PDFs for subregions. As noted in

section 2c, the S06 model was originally developed to

model the PDF of the RH for the entire tropics. Hence

the S06 model is not expected to produce a close fit to

the PDFs of the RH in subregions. However, it will be

shown later that the S06 model does yield good results

for r in most subregions.

Figure 6 shows that the PDFs of AIRS RH for dif-

ferent tropical or subtropical regions can be represented

FIG. 4. Plots of (a) mean (mR) and (b) standard deviation (sR) vs r, and (c) mean (mR) and (d) standard

deviation (sR) vs k, for generalized model.
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by the theoretical generalized model. The variations in

the PDFs can hence be summarized by variations in

r and k. Figure 7 shows the longitudinal variation of

r (Figs. 7a,d), k (Figs. 7b,e), and error e (Figs. 7c,f) (see

below) for the S06 and generalized model fits to PDFs

for 108 by 208 regions in the (upper panels) subtropics or

(lower panels) tropics. As could be expected from Fig. 6,

both r and k vary with longitude and latitude.

The value of r for the tropics is generally larger than

in the subtropics, and the longitudinal variation of r is

much larger in the tropics than the subtropics (Figs. 7a,d).

The r for the S06 and generalized models have very

similar spatial variations and even quantitative agree-

ment, except in tropical Indian (;408E), western Pacific

(;1208E), and Atlantic (;508W) Oceans. This is

somewhat surprising given the different shapes of the

PDFs for the S06 and generalized models (e.g., Fig. 6).

The similarity in r between the fits using the S06 and

generalized model can be understood in terms of rela-

tionships between r and the mean value mR. As dis-

cussed in section 2, r is closely related to mR, with only

weak sensitivity to k. Hence, for both k 5 1 (S06 model)

and k . 1 (generalized model), r will depend primarily

on the mean, and not other characteristics, of the RH

distributions.

The parameter k also varies with both longitude and

latitude; see Figs. 7b,e. In the subtropics k varies be-

tween 2 and 6, while in the tropics k varies from 3 to 10.

In both the tropics and subtropics the longitudes with

maximum in k are generally the longitudes where r is a

minimum; for example, in the tropics large k and small r

occur around 608E and 908W.

The r and k shown above were determined by mini-

mizing the error between the observed and modeled

PDF. To estimate the uncertainty in these estimates, a

moving-blocks bootstrap analysis (Künsch 1989) has

been performed (where moving time blocks of data are

used to account for correlation in time). The vertical

bars in Fig. 7 show the uncertainty (61 s) in the cal-

culated r and k. The uncertainty for r is very small in the

both subtropics and tropics and much smaller than the

spatial variations in r. The uncertainty in k is larger but

still less than spatial variations in k.

As discussed above, the generalized model fits the

data better than the S06 model. To quantify this, and the

spatial variations in how well the models fit the data, we

calculate the root-mean-square error e between the

PDFs of the model and data. Figures 7c,f show that the

error for the generalized model is about 10 times less

than that of S06 model. Also, longitudinal variations in e

for the S06 model are very similar to the variations of k

of generalized model. This is because the S06 model is

identical to the generalized model when k 5 1, and as k

of the generalized model increases the S06 model de-

viates from the data, resulting in larger e when k is

larger.

To examine the spatial variations of r and k further we

compare maps of these fields. Figures 8a,b show that

r and k have similar spatial variations, with small (large)

k in regions of large (small) r. Specifically, there is large

r and small k in the tropical western Pacific (58S–58N,

1208E) and tropical America (58S–58N, 608W), and small

r and large k in the tropical eastern Pacific (58S–58N,

1208W) and the northern subtropical mid-Pacific (158–

258N, 1508E). Maps of mR and sR calculated from the

AIRS data are shown in Figs. 8c,d. As expected

from Fig. 4 and the related discussion, there is a strong

resemblance between maps of mR and sR to those of

FIG. 5. (a) PDFs of 250-hPa RH and the whole tropics (308S–308N, 08–3608E) from AIRS data (symbol)

and fits by S06 (k 5 1; dotted) and generalized (variable k; solid) models. (b) As in (a) except for CDFs.
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r and k, respectively; that is, there is large mR where r is

large and large sR where k is small.

The variations in r and k could provide insight into the

variations in the characteristics of the moistening pro-

cesses. If the drying time is assumed constant, large

r and small k indicates rapid, random remoistening,

whereas small r and large k implies slower, more regular

moistening processes. There are large r and small k, and

hence by the above arguments rapid, random remois-

tening, in the tropical convective regions. In contrast,

there are small r and larger k in the dry regions, indi-

cating slower more regular remoistening.

We conjecture that these variations in the remois-

tening are consistent with our understanding of the

physical processes. In the tropical convective regions

the moistening is thought to occur by direct rapid

moistening by vertical transport in convective systems,

whereas lateral mixing by ‘‘large scale’’ advection plays

a larger role in the remoistening the drier tropical and

subtropical regions (e.g., Sherwood 1996; Salathe and

Hartmann 1997; Pierrehumbert 1998; Waugh 2005;

Ryoo et al. 2008). This lateral mixing is produced by

transient wave activity (Pierrehumbert and Roca 1998),

including Rossby wave breaking along the tropopause

(Waugh 2005; Ryoo et al. 2008), and is slower and more

regular than convection. The process is not so regular as

to be periodic (which would correspond to k of the or-

der of 100) but is considerably less random than pro-

cesses where k is of order 1.

b. Seasonal and altitudinal variations

The above analysis considered only northern winter

data at 250 hPa. We now examine the seasonal and al-

titudinal variations of AIRS PDFs and whether these

PDFs are still well fit by the generalized model.

Figure 9 shows PDFs of AIRS data for the whole

tropics (308S–308N, 08–3608E) for different seasons and

at several different altitudes. At all levels there are only

FIG. 6. As in Fig. 3a except for subregions in the subtropics (158–258N): (a) 408–608E, (b) 1208–1408E, and (c) 808–1008W; and the

tropics (58S–58N): (d) 408–608E, (e) 1208–1408E, and (f) 808–1008W.
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weak seasonal variations, which are reasonable for

the tropics. There are, however, large variations in the

shape of PDFs with altitude. At 400 and 600 hPa the

peak occurs at or less than RH 5 10%, which is much

drier than the peak at 250 hPa, whereas at 850 hPa there

is limited dry air and the dry peak occurs around RH 5

40%. In contrast to 250 hPa, the PDFs are bimodal at

400, 600, and 850 hPa, with a second moist peak at

RH ’70%–80%. Also shown in Fig. 9 are the fits to the

data using the generalized model. Because the seasonal

variations are small, we only show the fit for DJF data.

The model can capture the general characteristics of

the vertical variations, in particular the variation in the

peak values. As at 250 hPa, the generalized model is a

much better fit than the S06 model at the lower levels

(not shown). However, the generalized model cannot

reproduce the observed bimodal PDFs, and the dis-

agreements between the observed and generalized

model is largest when the observed PDFs are most bi-

modal.

The PDFs shown in Fig. 9 come from the collection of

dry and moist RH over the whole tropical region, which

includes moist air from the convective region and dry air

from the nonconvective region. When we look at the

PDFs for smaller 108 latitude by 208 longitude subre-

gions, most of them are unimodal. For example, in

tropical convective regions [e.g., the western Pacific

(58S–58N, 1008–1408E)], the PDFs have a peak in high

RH, while in nonconvective regions like the eastern

Pacific (58S–58N, 1208–1608W) the peak of PDF is at low

RH. These observed PDFs for the subregions can be

well fit by the generalized model. When these different

regions are combined, the resulting PDF is simply the

average of the PDFs of all subregions. Hence, given that

FIG. 7. Longitudinal variation (a),(d) r; (b),(e) k; and (c),(f) error e for S06 (dotted curves) and generalized (solid) models for (top)

subtropics and (bottom) tropics. The vertical bars indicate the one-sigma bounds computed by the moving-blocks bootstrap distribution.
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the peaks of the PDFs of convective and nonconvective

subregions are at different RH values, bimodality in the

PDF of the combined region is expected. There are

some subregions at the edge of the tropical convective

regions where bimodal PDFs occur (e.g., 58S–58N, 408–

608W), but the distinction between low values and high

values is small (not shown). In addition, this bimodal

behavior is tightly related to temporal variations because

of the movement of convection into or out of a region,

where in this case the PDF is a temporal rather than a

spatial average of PDFs with variable locations of peaks.

The bimodal distributions in the midtroposphere are

consistent with Zhang et al. (2003), who observed bi-

modal features in the PDFs of precipitable water using

monthly-mean data. Furthermore, if monthly-mean

AIRS data rather than daily values are used, the PDFs

for midtropospheric RH look similar to the PDFs of

precipitable water averaged over 500–300 hPa shown in

Zhang et al. (2003); for example, compare Fig. 1a with

Fig. 8 of Zhang et al. (2003). [The difference is due to

differences in measurements, regions of interest, and

time periods. The similarity is much clearer when we

compare 3-monthly-mean data with them (not shown).]

The vertical variations of r, k, and e for PDFs, for the

whole tropics and whole year, are shown in Fig. 10.

There is a minimum in r in the midtroposphere, for both

the S06 and generalized models. A midlevel minimum

in the mean RH from AIRS has already been reported

(Gettelman et al. 2006; Ryoo et al. 2008), and the

minimum in r could be expected given the close rela-

tionship between r and mR. Also, S06 found a minimum

at the same altitude in their calculations of r from GPS

data.

The parameter k also varies in the vertical, with an

increase with altitude above 500 hPa. As larger k re-

flects less variable remoistening processes, so this in-

crease of k suggests the moistening processes in the

upper troposphere are more affected by more regular

and relatively slow large-scale process such as subsi-

dence, rather than by rapid moistening by convective

updraft from the surface.

The error e between model and data is shown in Fig. 10c.

As at 250 hPa, e for the S06 model is much larger than

the generalized model, and the variation of e for the S06

model is similar to the variation in k. The vertical var-

iation of e for the generalized model differs from that of

r and k, with local maximum between 300 and 400 hPa

and between 600 and 700 hPa. These are altitudes where

the PDFs are most bimodal.

Similar vertical variations of r and k occur for sub-

regions, although there are variations with longitude (see

Fig. 11). As expected from the discussion in section 2, the

FIG. 8. Maps of (a) best-fit r, (b) best-fit k, (c) mean (mR), and (d) standard deviation (sR) of 250-hPa AIRS RH.
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vertical and longitudinal variations of r and k are similar

to those of mR and sR, respectively (see Fig. 1 of Ryoo

et al. 2008). It is interesting to note that in the tropical

convective regions (1008–1408E, 408–608W) there are

local minima in both r and k at midlevels (;400 hPa),

whereas in nonconvective regions there is a maximum in

k at midlevels.

The vertical variations of r and k in convective regions

are consistent with analysis of radiative processes and

the energy balance, which show a minimum in convec-

tive detrainment at midlevels (Hartmann and Larson

2002; Folkins et al. 2002, 2008). This analysis indicates

that in convective regions the air at and above 200 hPa is

composed mainly of very moist air parcels that have just

detrained from convection, whereas around 400 hPa

there is a combination of moist air from recent detrain-

ment and very dry air that has subsided from 200 hPa. As

a result the remoistening time at midlevels is longer than

aloft, resulting in smaller r (and mR). Also, there is larger

variability in the moisture and more regularity in re-

moistening at midlevels, resulting in a larger k.

4. Other data

Having examined PDFs from AIRS we now consider

the PDFs of RH measurements from other instruments

to test the robustness of the above results. We first

compare with measurements made by UARS MLS

(1992–94) and Aura MLS (2005–07) instruments. The

latter overlaps with the AIRS data record enabling a

comparison of PDFs for the same time periods. We also

compare our results with those shown in S06 for GPS

data.

For our analysis of MLS measurements we focus

on northern winter (DJF) measurements at 215 hPa

(which can be compared with the AIRS 200–250-hPa

layer). Figure 12 shows the PDFs of AIRS, UARS MLS

(1992–94), and Aura MLS (2005–07) RH for subregions

in the tropics (58S–58N) and subtropics (158–258N).

Here two different AIRS PDFs are shown. One was

formed using all available data and the other using only

data sampled at the same locations as Aura MLS. PDFs

from different datasets show good agreement except the

FIG. 9. PDFs for the whole tropics (308S–308N, 08–3608E) for AIRS data at 250, 400, 600, and 850 hPa.

Different colors are for different seasons, and dotted curve is fit to DJF data for generalized model.
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tropical convective region (58S–58N, 1208–1408E). In this

region the AIRS PDFs are narrower, with peak around

60%, whereas the UARS MLS and Aura MLS PDFs are

broader, with low values less than 20% and high values

larger than 100% (see also Read et al. 2007). According to

Fig. 4d, this would imply that k from AIRS should be

considerably larger than k from both MLS measurements.

Figure 13 compares the longitudinal variation of r and

k for the tropics (58S–58N) and subtropics (158–258N)

for PDFS of AIRS, Aura MLS, and UARS MLS mea-

surements shown in Fig. 12. Consider first the parameter r.

There is good agreement in r from all three datasets

even though they cover different years. All three data-

sets show generally higher values of r in the tropics than

the subtropics, with largest values in the tropical con-

vective regions (around 1208E and 608W), and larger

longitudinal variations in the tropics than the subtrop-

ics. The largest disagreements between the values of r

from the different measurements are in the tropical

locations with local maximum in r, where r from AIRS is

generally larger than from both MLS measurements.

This is true even if the same measurement locations are

used for the AIRS and Aura MLS PDFs, indicating that

this is a difference in the measurements and not due to

differences in the sampling or different years.

The agreement between k from the different datasets

is not as good as for r. There is qualitative agreement in

the longitudinal variations of k, but there are quantitative

differences. In the tropics, k from AIRS are consistently

larger than those from both MLS measurements, even

when sampling the same air as Aura MLS. The largest

difference between AIRS and MLS occur in tropical

convective regions (see above). There is better agree-

ment between the two MLS datasets, although differ-

ences occur when k is larger (with larger k from Aura

MLS). The differences in subtropical k among the da-

tasets are not as consistent as the tropics, but the general

tendency is the same; for example, k is generally larger

from AIRS than MLS.

The above comparison is focused only on upper-

tropospheric measurements. As a check on the robust-

ness of the vertical variations, we briefly compare our

results with the GPS data shown in S06. As discussed

above, r from the GPS data show a minimum at the

same height as that from AIRS (see Fig. 6 of S06). The

values from GPS are smaller than those of AIRS; for

example, for the S06 model the r at 400 hPa is 0.42 from

GPS (for January 2002 measurements) compared with

0.53 from data (for DJF 2002/03–2006/07 measurements).

S06 fit their model to CDFs rather than PDFs and used a

different criterion to determine the best-fit r, but tests

show that neither of these causes significant differences in

the estimates of r. The difference in our estimate r from

AIRS and S06 calculations of r from GPS data is thus due

to actual differences in the PDFs from the two datasets.

The exact cause of the above differences between the

different datasets is not known, but the broader PDFs

from Aura MLS than from AIRS is consistent with the

analysis of Fetzer et al. (2008). Even though there are

some quantitative differences in the values of r and k for

PDFs from different datasets, there is overall good

agreement in the spatial variations of r and k, both

horizontally and vertically. This gives us some confi-

dence in general conclusions primarily based on analysis

of the AIRS data.

FIG. 10. Vertical variation of (a) r, (b) k, and (c) error e for fits

to PDFs of whole tropics and whole year for S06 (dotted) and

generalized (solid) models.
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5. Conclusions

Measurements of tropospheric relative humidity (RH)

from three different satellite instruments indicate that

the probability density functions (PDFs) of daily RH

are broad and non-Gaussian. This applies not only for

PDFs of the whole extended tropical region (308S–

308N) but also for PDFs of smaller 108 latitude by 208

longitude subregions. Although the ‘‘local’’ PDFs are

all broad, the location of the peak, the skewness, and the

width vary between the tropics and subtropics, within

the tropics or subtropics, and with altitude.

The observed PDFs for all subregions can be well fit

using a simple statistical model that is a generalization

of that proposed by S06. This model assumes the RH is

determined by a combination of drying by uniform

subsidence and random remoistening events and has

two parameters: r, the ratio of drying time (via subsi-

dence) and remoistening time, and k, a measure of

variability of the remoistening time.

FIG. 11. The cross section of longitudinal vs altitudinal variation of (a) r and (b) k for the subtropics (158–258N) and

tropics (58S–58N).
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The parameters r and k not only provide a concise

way to characterize the RH distributions, but also may

provide insight into the processes controlling the RH

distributions. In the tropical convective regions there is

large r and small k in the upper troposphere, indicating

rapid, more variable remoistening in these regions. In

contrast, in dry regions in the subtropics and tropical

eastern Pacific there is small r and large k, indicating

slower, more regular remoistening there.

We conjecture that these variations in the remois-

tening process are consistent with our understanding of

the physical processes in different regions. Previous

studies have shown that convection and vertical mixing

play the key role in regulating humidity near tropical

convective regions, but remoistening in the subtropics

comes from lateral advection of moist air from convec-

tive regions (e.g., Sherwood 1996; Salathe and Hartmann

1997; Pierrehumbert 1998; Dessler and Sherwood 2000;

Galewsky et al. 2005; Dessler and Minschwaner 2007).

Thus, in tropical convective regions we expect direct

remoistening by rapid, random vertical motions, whereas

in dry, nonconvective regions the remoistening occurs

by slower, more regular lateral mixing by large-scale

advection. The r and k that fit the observed PDFs also

vary in the vertical. In the tropics r and k both have a

midlevel (300–500 hPa) minimum, indicating slower and

more regular remoistening in the midtroposphere. This is

consistent with a midlevel minimum in convective de-

trainment and midlevel air being a mixture of recently

detrained moist air and very dry air that has subsided

from below (Folkins et al. 2002).

Although the satellite datasets considered here show

a consistent spatial variation in the PDFs, there are

some quantitative differences. For example, the MLS

FIG. 12. PDFs for three subregions in the (a) subtropics (158–258N) and (b) tropics (58S–58N) for 250-hPa AIRS, Aura MLS, and

UARS MLS measurements, respectively. Dashed curves are for AIRS data sampled at Aura MLS locations.
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PDFs are generally broader than the AIRS PDFs, with

a higher probability of low RH and high RH in the MLS

data (and as a result k is smaller from MLS data). The

magnitude of these differences varies with location, and

in some regions the differences are very small (see

Figs. 10 and 11). The cause of these differences needs to

be examined further. It will also be important to con-

sider other water vapor datasets, in particular those

from in situ measurements. Luo et al. (2007) recently

presented PDFs of upper-tropospheric (UT) RH from

the Measurement of Ozone and Water Vapor by Airbus

In-Service (MOZAIC) aircraft program. These PDFs

are often bimodal, and appear to differ from the AIRS

and MLS PDFs for similar regions and seasons. More

analysis is needed to quantify and understand the dif-

ferences between different datasets.

As discussed above, the spatial variations in r and k

appear consistent with our understanding of the physi-

cal processes controlling RH distribution. However, this

is primarily a qualitative comparison and a more

quantitative link between the different physical pro-

cesses and the parameters r and k is needed. One ap-

proach to do this might involve using trajectory-based

water vapor simulations. Previous studies have shown

that trajectory-based simulations can reproduce upper-

tropospheric RH observations (Pierrehumbert and Roca

1998; Dessler and Sherwood 2000; Waugh 2005; Dessler

and Minschwaner 2007). Analysis of these calculations

would enable some of the assumptions used to derive

the statistical model to be tested and would provide an

opportunity to examine the origin of moisture and the

control mechanisms.

There are several potential uses of the statistical

model derived here. Given that the model parameters

r and k concisely characterize the RH distributions,

fitting this model to climate model output may be useful

for quantifying differences in RH distributions between

climate models and observations. Although, care will be

needed to make sure similar spatial and temporal scales

are used for both the data and models. The statistical

model may also provide a concise way to characterize

any temporal changes in simulated RH distributions

(e.g., in simulations with increasing greenhouse gases).

Finally, the statistical model may also be useful for ex-

ploring how changes in physical processes could alter

the RH distribution.
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FIG. 13. Longitudinal variation (a),(c) r and (b),(d) k for generalized model fit to AIRS, Aura MLS, and

UARS MLS measurements. Dashed curves are for AIRS data sampled at Aura MLS locations.
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