
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. (2007)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.845

The benefits of posing
application software
as a language interpreter

W. Van Snyder∗,†

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove
Drive, Mail Stop 183-701, Pasadena, CA 91109, U.S.A.

SUMMARY

Complicated and comprehensive software that is meant to execute in a non-interactive or semi-interactive
mode needs to be configured to carry out the desired tasks, needs to carry out those tasks efficiently,
needs to be extensible to take on additional ambitions, and needs to be maintainable. To reduce costs, it is
helpful if experts in the discipline to which the program applies can configure and operate the program
without needing to become expert software engineers and without needing to become familiar with the
internal details of the program, and if software engineers who develop and maintain the program need
not become experts in its target discipline. Progress toward these goals can be advanced by posing the
software as a language interpreter. We describe the application of this principle to ground-based data
analysis software for the Microwave Limb Sounder instrument on the NASA Earth Observing System
Aura satellite, but we believe the principle has substantially broader applicability. Copyright © 2007 John
Wiley & Sons, Ltd.

Received 9 November 2006; Revised 8 June 2007; Accepted 26 June 2007

KEY WORDS: mathematical software; Fortran; scientific software; real-time systems; operating systems

INTRODUCTION

Ground-based data analysis software for the Microwave Limb Sounder (MLS) instrument on the
Earth Observing System (EOS) Aura satellite [1,2] (as opposed to software that executes within
the instrument or spacecraft) is divided into four major programs. The second of these, called
Level 2, or more tersely L2, is charged with the task of analyzing observed spectra of microwave

∗Correspondence to: W. Van Snyder, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive,
Mail Stop 183-701, Pasadena, CA 91109, U.S.A.

†E-mail: van.snyder@jpl.nasa.gov

Contract/grant sponsor: National Aeronautics and Space Administration

Copyright q 2007 John Wiley & Sons, Ltd.

W. VAN SNYDER

thermal emission (radiance) from the atmosphere, altogether 660 million observations, to deduce
its temperature and the concentrations of approximately 20 trace constituents at roughly 250 000
points, that is, roughly 5 million results, every day.
As one might expect, extensive computations are required, but numerous factors contribute to the

organization and progress of the computation. In addition to the radiance, a spectroscopy catalog,
antenna patterns, filter shapes, and orbit and attitude data, an initial guess for the parameters
of interest, and a few other minor data such as leap seconds are required. Radiances in some
spectral bands are useful to observe some molecules but irrelevant to others, or are useful at some
altitudes but not at others. Emission from different molecules can most efficiently be modeled by
different computational methods. Finally, the same primary model that is inverted to determine the
temperature and composition of the atmosphere can be used ‘offline’ for scientific investigations
unrelated to instrument data analysis, and to calculate the derivatives of radiances with respect to
temperature and concentration, for use by other models that can be deployed to deduce composition
and temperature from radiance.
Other than the radiance, orbit and attitude data, and initial guess (which is obtained from weather,

climate, and chemical transport models, and climatological averages), all of the considerations
arising from the foregoing could be incorporated into the L2 program as initial data and ordinary
program decision making. From our experience with a previous instrument and its data analysis
software, we learned that configuring the software to operate efficiently, reliably, and accurately
requires extensive experimental tuning. Statements in a general-purpose programming language are
a very low-level representation of the configuration of the program. It would further be difficult to
represent and maintain the configuration as a coherent document, disentangled from all the minutiae
of the program. As such, if the configuration were expressed by ordinary initial data and decision-
making statements in the program, it would be tedious to change and more error prone than if it
were expressed at a higher level. Perhaps more importantly, since the size of the L2 program now
exceeds 250 000 lines, recertification after each tiny tweak of the configuration could be hideously
expensive.
Therefore, we chose to configure each of the major MLS programs from one of their inputs

rather than using program statements. In a bygone era, that input might have been a sequence of
numbers, carefully organized in a rigid format and sequence, thereby being difficult to develop
and maintain. Tuning a configuration expressed in that way would have been nearly as difficult as
tuning one expressed within the program. An inch further along, one might have used something
less rigid, such as Fortran NAMELIST. Neither of these methods addresses, in a convenient way, a
need to create indefinite numbers of objects or to specify interrelations among them. Fortunately,
today we have more computational resources at our disposal and more software technology upon
which to draw, which allows us to pose the configuration specifications as easily readable, writable,
and maintainable specifications, oriented toward the problems to be solved rather than the details
of how to solve them.
The notation for the configuration follows a grammar, and it is analyzed using conventional

compiler technology. Therefore, it can be thought of as a ‘little language’ or a ‘domain-specific
language’ in the spirit of YACC [3]. The notation is not a general-purpose programming language,
and a configuration expressed in that notation is not a program, just as a grammar expressed using
YACC is not a program. The notation declares details of the configuration, such as which radiances
to use and which results to obtain, and specifies actions to be performed, such as to solve for specified
quantities using specified radiances and methods. The program is organized as an interpreter of

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

POSING SOFTWARE AS A LANGUAGE INTERPRETER

this language. When it encounters a declaration specification, it builds a data structure. When it
encounters an action specification, it performs the specified action. The fact that our problem does
not require the notation for its configuration to provide for iteration or testing is not relevant to the
concept. Other problems might require these capabilities. Syntax to denote them and methods to
process them are easily incorporated, a fact that illustrates the power of the paradigm.
A typical operational configuration is about 13 000 lines, of which roughly 10 000 are generated

automatically from roughly 500 statements by a macro expansion package. Another roughly 500
statements describe the instrument, which has not (cannot!) been changed since the spacecraft
was launched‡. This leaves roughly 3000 lines that configure and specify the computations proper.
Since the program and its configuration are orthogonal instead of intertwined, certifying one is
largely independent of certifying the other. The size of the configuration is only about 1.2% the
size of the program, so certifying it is of much lower cost than certifying the program. By analogy,
ask yourself, ‘Do I certify my compiler every time I change my program, or do I just certify my
program?’

SUPERFICIAL DESCRIPTION OF COMPILER TECHNOLOGY

We use conventional techniques borrowed from compilers to analyze the configuration. The char-
acters of input are grouped into tokens, analogous to words and punctuation marks in natural
languages, by a process called lexing. The structure of sequences of tokens is then recognized by a
process called parsing, which produces an abstract syntax tree (Figure 1), analogous to a sentence
diagram resulting from grammatical analysis of a sentence in natural language. Just as with natural
language, it is possible in synthetic languages to express perfectly grammatical nonsense, so the
first step after constructing the tree is a sanity check.
The interested reader is referred to a text specifically concerned with compiler technology, e.g.

[4,5], for more details than those presented here.

Syntax

The configurations for all four of our major programs share a very simple syntax: It consists
of begin–end blocks, each containing specification statements. The block organization is used to
indicate which parts of the configuration are the same for every batch of data (such as the receiver
description or the spectroscopy database), and which parts are re-traversed for each batch of data
(substituting for explicit loop control statements). Each specification optionally begins with a label
followed by a colon, and thereafter consists of a word followed by a list of zero or more name–
value pairs, each pair preceded by a comma. The blocks and specifications that are particular to
each program are different. A short example of some specifications appears in Appendix A. Others
might prefer a different syntax, while preserving the essential idea of separating the program from
its configuration, and specifying the configuration by using a domain-specific language.

‡Specifying the instrument as part of the configuration rather than within the program allows the program to be used to
investigate other instruments, including proposed instruments that have not yet been constructed or deployed.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

W. VAN SNYDER

named

FOO spec_args

specname assign

expr

spec_args

specname assign

FOO

Tree Arc

Decoration

spec_def

specname:index

fieldname:index

...

section

sectname:index ...

Parser-generated

Pseudo-terminal

field_spec

specname

field_type

dt_def

typename:index lit:index lit:index...

name_def

parm_name:index typename

spec_def

specname:index

typename

field_xxxx ...

specname:index

fieldname:index

node id

name [:decoration]

fieldname:index

Figure 1. Some subtrees of the abstract syntax tree with decorations.

Lexing and parsing

Lexing is carried out by a handwritten deterministic finite automaton. Each token consists of its
part of speech (name, number, plus sign, etc.), the index of its text in a string table (so no further
searching is needed), and the position where it appeared in the configuration (for error reporting).
One could use a parser generated automatically by a parser generator, e.g. YACC [3], or a

handwritten recursive-descent parser. Our grammar is quite simple, so we chose the latter to avoid
the need for dependence upon yet another program.
To facilitate type checking, and since parts of the configuration need to be examined more than

once, the result of parsing is represented by a tree. In the case of MLS L2, we traverse part of the
tree several times, once for each batch of data (about 2400 spectra, from which the temperature
and composition are deduced at about 1400 points in the atmosphere).

Type checking and declaration analysis

Syntax rules allow the value of each field to be a number, a word, a more general expression, or
a string, but if a field’s value is expected to be a numeric expression, then a string or the label

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

POSING SOFTWARE AS A LANGUAGE INTERPRETER

of another specification is not appropriate (i.e. it is grammatically correct nonsense). A benefit of
posing software as a language interpreter, which we see as a particularly important benefit, is that
a single framework can be used to specify and check the names of blocks and their allowed order,
the names of specifications that can appear in each block, the names of fields in each specification,
which fields are required, whether fields can be duplicated, the type of each value for each field in
each specification, the relationship between configuration items, and to specify, check, and convert
the physical units of numeric inputs to standard units (e.g. kilometers or megaHertz, even if the
inputs are meters or gigaHertz).
The details of how the L2 program represents type-checking requirements and how it does

type checking are less important than the principle that type checking ought to be automatic and
unavoidable, and performed in one place in the program. A superficial description of our method
appears in Appendix B. The interested reader is referred to a compiler text for more information.
Checking of physical units of numeric values could have been incorporated into the type-checking

framework, but the importance of doing so was not appreciated at the time of its design; since other
development has been of higher priority, it has not yet been so incorporated, so each process that
evaluates a numeric expression is responsible for units checking (conversion to standard units is
done automatically within the expression evaluator). Units analysis is a by-product of expression
evaluation, and units checking is therefore quite simple. Even so, some of our developers are less
assiduous than others regarding units checking. In hindsight, we recognize (and recommend) that
units checking should have been incorporated into the type-checking process.

TRAVERSING THE TYPE-CHECKED TREE

After type checking is complete, the actions proper of the program are carried out by traversing
the tree again, skipping the type definitions, but repeatedly traversing a large part of the tree, once
for each batch of data. The program uses the index of the name of each block or specification as
a selector to carry out an action. The index for each name is assigned during the type-checking
phase.
The coarsest-scale structure of our configuration is a begin . . . end block, so subtree roots

near the root of the tree represent the block structure of the configuration. The first procedure in
the tree traversal invokes the next levels of processing depending on the block indices and includes
a looping structure to process some of the blocks repeatedly. This is what allows to escape the
requirement for explicit loops and tests within the configuration.
Assuming root is the index of the part of the tree that arose from input, the following illustrates

the processing of sections. The decoration function accesses a field of the same name in the
specified tree vertex, which in the case of a section subtree is the section index, thanks to the type
checker. Decorations are discussed in Appendix B.

do i = 1, nsons(root)
son = subtree(i, root)
select case (decoration(subtree(1,son)))
case (z_globalSettings)
call set_global_settings (son, ...)
...

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

W. VAN SNYDER

case (z_spectroscopy)
call spectroscopy (son)
...
case (z_construct, z_fill, z_join, z_retrieve)
do ! Loop over the chunks of data
select case (decoration(subtree(1,son)))
...
end do
end select
end do

To add a section, one need only add a branch to the case selector control structure and write the
handler for that section, which (if one has been careful about software engineering practices) is
largely independent of the others.
The procedure that processes each section knows what is allowed in that section and knows that

only allowed specifications appear, thanks to the type checker. For example, the fill section is
allowed to have a vector specification, among others, and is not allowed to have a retrieve
specification. Each procedure that processes a specification uses the fields in the specification to
complete its definition. It knows what fields are allowed, knows that required fields have been
verified to be present, knows that the types of field values are correct, and knows that disallowed
fields do not appear, again thanks to the type checker.
Assuming that root is now the index of the root of a section subtree, the following illustrates

the processing of that section and one specification within it. The get spec id function knows
how to skip the optional label and then accesses the decoration of the specification subtree, which is
in this case the specification index, again thanks to the type checker. The get field id function
works similarly. The decorate subroutine stores a value into the specified tree vertex.

do i = 2, nsons(root)-1 ! Skip the section name at begin and end
son = subtree(i,root)
select case (get_spec_id(son))
case (s_vector)
do j = 2, nsons(son) ! skip spec name, get to fields
gson = subtree(j,son)
select case (get_field_id(gson))
case (f_template)
templateIndex = decoration(decoration(subtree(2,gson)))
case (...)
end select
end do
call decorate (son, addVectorToDatabase(vectors, createVector(&
& vectorName, vectorTemplates(templateIndex), ...)))

case (...)
...
end select
end do

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

POSING SOFTWARE AS A LANGUAGE INTERPRETER

This illustrates that processing a vector specification creates a vector, adds it to a database, and
decorates a tree vertex within the specification with the vector’s index in the vector database. When
a field for which the value is required to be a vector is processed, the decoration of the vertex in the
tree where the vector is referenced is known to be the index in the tree of the vector’s declaration
(thanks to the type checker), whose decoration in turn is the index of the vector in the vector
database. The template field of a vector specification is required, and is required to be the label
of a vectorTemplate specification (analogous to a Pascal type definition), which specifies the
quantities the vector contains. Thanks to the type checker, this procedure knows that the template
field’s subtree is decorated with the index of the template. A vectorTemplate specification
is processed similarly to a vector specification. The root of its subtree is decorated with the
index of the created template. The procedure to process another specification would determine
the index of a vector in the vector database in the same way as the templateIndex above is
accessed.
It is clear that the program can be configured to deal with any desired number of vectors,

each with any desired collection of quantities (which are in turn defined by declarations within
the configuration specification); this flexibility extends to all of the data structures to which the
configuration specification has access.
Some of the specifications, such as vector, simply result in construction of a data structure;

others specify an extensive computation. For example, a retrieve specification results in invoking
a Newton method to invert the forward model. A retrieval can act on several forward model
configurations, which are specified by forwardModel specifications, whose labels are mentioned
in the retrieve specification. An example of a forwardModel specification, a retrieve
specification, and specifications for some related data structures is shown in Appendix A.
Adding specifications to a section, or fields to a specification, requires simple additions to the

type-checking tables (illustrated in Appendix B), adding branches to the case selectors, and either
putting simple processing in line or writing the appropriate procedures, which again (assuming
careful software engineering) are largely independent.
The MLS L2 program typically spends 94% of its time evaluating the forward model and its

derivatives with respect to composition and temperature, and nearly all of the remaining 6% doing
linear algebra related to inverting the model, both of these processes, operating together, being
triggered by retrieve specifications. L2 is an example of those programs that perform inten-
sive computations that are richly parameterized, in which many different variations of the shared
parameterized computations occur in the same application, and in which each invocation of such
a computation consumes substantial computational resources. These computations rely on param-
eters and data structures specified by the configuration, and are triggered by statements in the
configuration, but are not themselves organized as interpreters.
Processing specifications that declare parameters, data structures, and their relationship with

one another is not very computationally expensive. When specifications that cause substantial
computational processes to be invoked are encountered, the efficiency of the code that traverses
the tree and invokes them is irrelevant: the overhead of interpretation, and indeed of processing
every specification other than retrieve, is easily offset. The MLS L2 program typically spends
15 s reading and parsing the configuration, creating, type checking, and traversing the tree, and
executing all actions other than retrieve specified by the configuration. A typical run requires
between 15 and 30 h, so the overhead of interpreting a domain-specific language varies between
0.015 and 0.03%: The interpretive approach comes essentially for free.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

W. VAN SNYDER

BENEFITS FOR PROGRAM DEVELOPMENT AND MAINTENANCE

In addition to automatic and complete type checking, several other benefits accrue as a consequence
of posing the program as a language interpreter. First, of course, is that the type checking is
concentrated in one process, so if errors are discovered they can be corrected just in that place. If a
program carries out similar processes in several places, they might be slightly different, and subtly
differently incorrect, in each place. Thus, concentrating type checking in one place reduces the
chance for difficult-to-find subtle errors, thereby increasing reliability and reducing maintenance
cost. Furthermore, this does not require every developer to understand how to do type checking.
Finally, the syntax analysis and type-checking framework are reusable since the syntax is the same in
each of our programs and the type-checking requirements for each program are specified separately
from the framework itself, using an organization that is common to our several programs. Indeed,
this component is sufficiently abstract that it could be far more broadly applied than only to our
four programs.
As new ambitions for the programs arise, it is frequently possible to respond to them by adding or

extending specifications for facilities to which the configuration already has access. In the examples
in the previous section, this would entail new branches in the select case control structures.
When it is necessary to extend or expand the facilities that can be accessed by the configuration,
it has proven to be easy to do so either by allowing new values in existing fields (usually new
literals for enumeration types), new fields for existing specifications (and sometimes new types for
their values), or new specifications. In most cases, the new facilities have been added by minor
modifications of existing procedures or by entirely new procedures that are nearly independent of
other procedures.
By way of example, the MLS L2 program was originally envisioned to use only a ‘full’ forward

model (using line-by-line evaluation of the spectroscopy) and to invert that model to produce
composition and temperature. We soon realized we could use simplified models for certain chemical
species. These simplified models use results computed offline by the full model. Our ambitions
also increased to encompass cloud modeling. Each of these modifications, including using the
full forward model offline to produce coefficients for later use online by simpler models, was
easily incorporated, because posing the program as a language interpreter has uncoupled parts one
from another, allowing modifications to be implemented at relatively lower cost than would be the
case with a more coupled design or a structure less uniform than that required by the interpreter
paradigm.

BENEFITS FOR STAFF ALLOCATION AND TRAINING

As experience with the MLS L2 program is gained, it is becoming clear, as anticipated, that
performance, in terms of both running time and accuracy of results, can be improved by tuning
its configuration. Tuning the configuration depends upon knowledge of atmospheric chemistry,
radiative transfer, and characteristics of the instrument, and is largely carried out by specialists
in those disciplines, not by software engineers. If the configuration were represented within the
program, it would have been necessary for those specialists to become familiar with the structure
and methodology of the program, and the programming languages in which it is expressed, and to
know where throughout the program the small fraction they were expected to tune could be found

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

POSING SOFTWARE AS A LANGUAGE INTERPRETER

(and to keep their hands off the rest!). Even though the specialists who configure the program work
with a configuration that specifies only what is to be done rather than every detail of how every
step of every computation is done, this tuning is a time-consuming process. It would be far more
difficult and far more time consuming if the configuration specification were more rigid, or worse,
entangled within and scattered throughout the program.
Posing the program as a language interpreter provides flexibility, readability, modifiability, and

maintainability of the configuration specification necessary for specialists to configure the program;
yet, it does not require them to become expert software engineers or to become familiar with the
internal operational details of the program. Similarly, the project software engineers, even those
responsible for the forward model, have not found it necessary to become experts in the disciplines
of atmospheric chemistry and radiative transfer. We believe this observation is applicable in many
disciplines, not only in data analysis software for satellite-borne instruments or in scientific and
engineering software.

CONCLUSIONS

Posing a program as a language interpreter confers several benefits. First, it allows to check easily
whether values in the configuration specification have the correct types and units, and the correct
relationship with one another. Second, it concentrates type checking in one place, thereby reducing
development and maintenance cost, and increasing reliability. Third, many of the facets of the
specification can be processed more independently from one another than might be the case with
a more rigid structure. Fourth, it allows modifications to the program to be implemented more
independently than might be the case with a different organization, thereby reducing development
and maintenance costs. Fifth, providing a problem-oriented abstraction separates configuration of
the program from the program proper, which allows members of the team to concentrate on their
fields of expertise, and thereby substantially reduces development, certification, configuration, and
training costs. Sixth, it confers considerable flexibility on the organization of the configuration,
and thereby on the operation of the program. Seventh, it simplifies the program by using one data
structure to represent and check the configuration, and to specify what is to be done and when to
do it. Eighth, it adds negligible overhead cost compared with the primary mission of the program.
Finally, it deploys well-known existing compiler technology that has a well-understood theoretical
and mathematical foundation, in an easily reused framework.

APPENDIX A. SHORT EXAMPLE

This example is a tiny fraction of a real configuration. It illustrates the appearance of a configuration
and how the specifications can be related to one another. ‘$’ at the end of a line indicates continuation.
/xyz is the same as xyz=true. Brackets enclose arrays. A colon within a field value (except
within strings) was intended for ranges, but can be used for arbitrarily related pairs of numeric
expressions. Semicolon precedes a comment. The fields shown for each specification are usually
only a subset of the available fields. The program assumes documented default values for omitted
optional fields.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

W. VAN SNYDER

vGridStandard: vGrid, type=Logarithmic, coordinate=Zeta, $
start=1000mb, formula=[25:6,12:3] ; 25 at 6 per decade, 12 at 3 per decade

hGridStandard: hGrid, type=regular, spacing=1.5 degrees, origin=0 degrees, $
module=GHz

CH3Cl: Quantity, vGrid=vGridStandard, hGrid=hGridStandard, type=vmr, molecule=CH3Cl
stateTemplate: VectorTemplate, quantities = [temperature, BrO, CH3Cl, CH3CN, ...]
state: Vector, template=stateTemplate
fullextFwmR3: ForwardModel, type=full, phiWindow=5 profiles, $

moleculeDerivatives=[extinction], /atmos_der, $
integrationGrid=vGridTangent, tolerance=0.2 K, $
/do_conv, /allLinesforRadiometer, signals=[’R3:240.B33W:O3.C3’], $
molecules=[extinction, [O2, O2, O_18_O], $
[O3, O3, O3_R3, O3_V1_3, O3_V2, O3_ASYM_O_18, O3_SYM_O_18]]

Retrieve, state=xR3extinction, fwdModelExtra=state, $
measurements=yR3extinction, measurementSD=yNoiseR3extinction, $
apriori=aR3extinction, covariance=SaR3extinction, $
outputSD=sdOutR3extinction, fwdModelOut=fR3extinction, $
aprioriFraction=aprioriFractionR3extinction, $
lowBound=lbR3extinction, highBound=hbR3extinction, $
diagnostics=diagR3extinction, forwardModel=fullExtFwmR3, $
columnScale=norm, maxJ=10, lambda=0.0, Ftolerance=0.01

The vGrid specification defines a ‘vertical grid’ labeled vGridStandard of logarithmic
type with coordinate �, which is − log10 P , where P is pressure in millibars. The grid starts at
1000mb, and then has 25 levels at six per decade of pressure, followed by 12 levels at three per
decade.
The values of the type and coordinate fields are verified by the type checker to be literals

of specified enumeration types. The values of the start and formula fields are verified by the
type checker to be numeric. The subprogram that processes the specification verifies the units of
the start field and that the value of the formula field is an array of tuples of unitless numbers.
Similar considerations apply to the other specifications illustrated here.
The hGrid specification defines a ‘horizontal grid’ labeled hGridStandard that has regular

spacing of 1.5◦ (this is orbital angle, not longitude or latitude) starting at 0◦. It is related to the
gigaHertz module of the instrument.
The Quantity specification defines a portion of the state vector related to the molecule CH3Cl.

This is a volume mixing ratio quantity represented on the two previously specified grids. The values
of the vGrid and hGrid fields are verified by the type checker to be the labels of vGrid and
hGrid specifications, respectively.
The VectorTemplate specification defines a template for vectors (similar to a Pascal-type

definition) labeled stateTemplate. It contains quantities which the type checker verifies are
defined by Quantity specifications, for temperature, BrO, CH3Cl, CH3CN, etc.
The Vector specification defines an instance of a collection of quantities, as specified by the

referenced template, labeled state.
The ForwardModel specification defines a configuration of the forward model labeled

fullextFwmR3. In this case, it specifies using the full forward model to examine five profiles
of data, to calculate derivatives of radiance with respect to extinction, to compute mixing ratio
derivatives, to carry out the integration on a specified grid named vGridTangent (not shown),
that the tolerance for radiance calculations within the forward model is 0.2K (radiance is measured

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

POSING SOFTWARE AS A LANGUAGE INTERPRETER

in brightness temperature), that antenna convolution is to be performed, that all spectral lines from
the spectroscopy catalog whose center frequencies are within the frequency bands measured by
the radiometers specified by the signals field are to be considered, and that calculations are to
be carried out for the specified molecules.
The Retrieve specification causes retrieval of atmospheric quantities mentioned in the vector

labeled state using measurements from the vector-labeled yR3extinction with standard
deviations in the vector yNoiseR3extinction, and a priori values for the retrieved quantities
in the vector aR3extinction with covariance SaR3extinction. The solution is to be
placed in the vector fR3extinction and its calculated standard deviation is to be placed in
the vector sdOutR3extinction. The fraction of the solution that is due to a priori values is
to be reported in the vector aprioriFractionR3extinction. The low and high bounds
for the solution, which keep the retrieval within physically meaningful limits, are given by
vectors lbR3extinction and hbR3extinction, respectively. Diagnostic quantities that
are of interest to study how the retriever converges to a solution are to be reported in a vector
diagR3extinction. The forward model configuration to be used for this retrieval is given by
a ForwardModel specification labeled fullExtFwmR3 (the one shown above). The Jacobian
matrix used during the Newton method is to have its columns scaled to unit length (which
minimizes the �2 condition number). The Newton method is to start with a Levenberg–Marquardt
stabilization parameter of zero, and is to continue until either 10 iterations have been taken, or the
norm of the difference between computed and measured radiances is 0.01K.
The details of how the several vectors are filled or the details of the disposition of the computa-

tional results are not shown. Some of the results are output products; some are used as input to a
subsequent stage of computation.

APPENDIX B. A FEW DETAILS ABOUT TYPE CHECKING

A brief discussion of the methods used by the MLS programs for type representation and checking
follows. The details are intended to be illustrative rather than essential. Other programs that follow
the basic principle of concentrating type checking in one place might use an entirely different
system.
The MLS programs encode enumeration types and their enumerators, and the type-checking

requirements, using a tree. The type-checking tree is part of the same data structure as the abstract
syntax tree. It is built by program statements before the parser runs, not within the configuration,
as it does not change frequently, but it is quite simple to change, and is not scattered throughout
the program. After the parser runs, the type-checking tree and the abstract syntax tree are joined
into a single tree by a new root node.
The type-checking process then traverses the entire tree, aided by a declaration table, into

which declarations of words that consist of references to parts of the tree are entered. Leaves are
connected to the declaration table by their string index. In addition to connections that represent
the sentence structure, vertices in the tree may be connected to each another using a field in each
vertex called the decoration, which is also used for other purposes since it is just an integer. When
the value of a field in a specification is the label of another specification, the tree vertex of the
reference is decorated with the index of a tree vertex within the declaration subtree for that label.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

W. VAN SNYDER

The type-checking process uses the structure of the type-specification tree to verify that the input
meets the type-checking conditions.
This unified type-checking system relieves the remainder of the program of this responsibility.

If type checking were not carried out by a single unavoidable process, for which one developer is
responsible, each module of the program would have to do this on its own. This would be repetitive,
and would further require training all of our developers in this technique, and enforcing a discipline
of incorporating it. The quality and effectiveness of this would vary greatly from one module to
another.
The subtrees shown in Figure 1 illustrate the relationship between subtrees arising from inputs

and the type-checking subtrees for those inputs. The subtrees with roots spec def, dt def
and section are part of the type-checking requirements, which would be ‘to the left’ of the
remaining subtrees that would arise from input. The decorations (shown as dashed lines) are inserted
during the type-checking traversal of the tree. Since the part of the tree that specifies type-checking
requirements is ‘to the left’ of the input and the tree is traversed depth first, left-to-right, the
interrelations encoded by the decorations within that part are inserted by the time the part of the
tree that arises from input is traversed.
The input giving rise to the top left spec args subtree would be of the form foo: specname,

field=expr, which defines a specification labeled foo. The input giving rise to the spec args
subtree at the top right would be of the form specname, field=foo, which references a specification
labeled foo. Notice that the foo vertex in the top right subtree is decorated with the index of
the spec args vertex in the top left subtree. This vertex was found because its index had been
entered into a declaration for foo when the top left subtree was processed.
The spec def subtree at the middle left shows the type-checking requirements for the top left

subtree. Notice that the specname vertex of the top left subtree is decorated with the index of
the spec def vertex of the middle left subtree. This vertex was found because its index was
entered into a declaration for specname when the type-checking subtrees were processed. The
field spec subtree of the spec def vertex indicates that the value of the field named by its
first son is required to be the label of a specification whose specname is labeled by its second son.
The decoration of the second son indicates this by being the index of the bottom left spec def
subtree. A field type subtree can specify numeric, string, boolean, or enumeration types. The
field type subtree of the spec def vertex indicates that the value of the field named by its
first son is required to be of the enumeration type specified by the dt def subtree at the middle
right. A particular literal can be a literal of several enumeration types. The section subtree at
the bottom right indicates that the section can contain a parameter definition for which the value is
required to be of the type specified by the dt def type definition at the middle right, as indicated
by its decoration.
In addition to being the index of another subtree, decorations can have other uses. For example,

the decoration of a spec def vertex can indicate that none of its fields can be duplicated, while
the decoration for a field spec or field type vertex can indicate that the field is required.
As mentioned above, the type-checking subtrees are built by program statements before the parser

runs. Here is an example of a definition of the enumeration type fwmType:

begin, t+t_fwmType, l+l_baseline, l+l_linear, l+l_full, l+l_scan, &
l+l_scan2d, l+l_cloudFull, l+l_hybrid, l+l_switchingMirror, &
l+l_polarLinear, n+n_dt_def, &

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

POSING SOFTWARE AS A LANGUAGE INTERPRETER

This is just a list of integer expressions. begin means ‘begin a subtree;’ t + x means ‘x is the index
of a type name;’ l + x means ‘x is the index of a literal;’ n + x means ‘it is time to finish the
subtree, and x is the node index of its root vertex.’ Using the notation <a : x, b : y, c : z . . . >,
which indicates a subtree with root a and sons b, c, . . . having decorations x, y and z, this builds
a subtree < dt def, fwmType, baseline, . . . polarLinear > (which has no decorations
when it is built).
Here is a little bit of the (52 line) type definition for a forwardModel specification:

begin, s+s_forwardModel, &
begin, f+f_integrationGrid, s+s_vGrid, n+n_field_spec, &
begin, f+f_type, t+t_fwmType, nr+n_field_type, &

nd+n_spec_def, &

This indicates that if the optional field named integrationGrid appears it must be the label of
a vGrid specification, the field named type is required§ and must have a value that is a literal of
the enumeration type fwmType, and duplicate fields¶ are not allowed. This builds the subtree
< spec def:d < field spec, integrationGrid, vGrid > · · ·< field type:r,
type, vGridType >> where the d and r decorations mean ‘no duplicates’ and ‘required’,
respectively.

ACKNOWLEDGEMENTS

The author learned how to construct a program as a language interpreter by attending a class on compiler
technology, given by Frank DeRemer and Tom Pennello as part of the Summer Institute for Computer Science
at the University of California, Santa Cruz, in 1983. Unfortunately, the text for that class, Compiler Construction
by Hand and by Tool, which includes description of the tree-based type-checking technique, was a manuscript,
which has not been published. The author subsequently used the framework learned in that class, cast in Pascal,
Modula-2, Ada, and Fortran 95, in many projects prior to EOS MLS, and to teach undergraduate-level compiler
classes for 14 years. The teaching materials for those classes, which include a framework similar to that used
in EOS MLS, are available from the author in Modula-2, Ada 83, and Fortran 95. This work was carried out at
the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics
and Space Administration.

REFERENCES

1. Waters JW, Froidevaux L, Harwood RS, Jarnot RF, Pickett HM, Read WG, Siegel PH, Cofield RE, Filipiak MJ, Flower DA,
Holden JR, Lau HK, Livesey NJ, Manney GL, Pumphrey HC, Santee ML, Wu DL, Cuddy DT, Lay RR, Loo MS, Perun VS,
Schwartz MH, Stek PC, Thurstans RP, Boyles MA, Chandra KM, Chavez MC, Chen G-S, Chudasama BV, Dodge R,
Fuller RA, Girard MA, Jiang JH, Jiang Y, Knosb BW, LaBelle RC, Lam JC, Lee KA, Miller D, Oswald JE, Pagel NC,
Pulala DM, Quintero O, Scaff D, Snyder WV, Tope MC, Wagner PA, Walch MJ. The Earth Observing System Microwave
Limb Sounder (EOS MLS) on the Aura satellite. IEEE Transactions on Geoscience and Remote Sensing Special Issue
on the EOS Aura Mission 2006; 44(5):1075–1092.

§nr+x means ‘it is time to build a subtree for a required field and the node index of its root node is x’.
¶nd+x means ‘it is time to build a subtree for a specification for which duplicate fields are not allowed and the node index
of its root node is x’.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

W. VAN SNYDER

2. Snyder WV, Wu DL, Read WG, Jiang JH, Wagner PA, Livesey NJ, Schwartz MJ. Processing EOS MLS level-2 data.
Tech Brief NPO 35188, NASA, March 2006.

3. Johnson SC. YACC: Yet another compiler. Computer Science Technical Report #32, Bell Laboratories, Murray Hill, NJ,
1975.

4. Aho AV, Sethi R, Ullman JD. Compilers. Principles, Techniques and Tools. Addison-Wesley: Reading, MA, 1986.
5. Fischer CN, LeBlanc RJ Jr. Crafting a Compiler. Benjamin-Cummings: Menlo-Park, CA, 1988.

Copyright q 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2007)
DOI: 10.1002/spe

